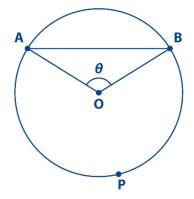


Mathematics: analysis and approaches

Practice paper 2 SL Total 80

Section A [36 marks]


1. [Maximum mark: 4]

A data set consisting of 16 test scores has mean 14.5. One test score of 9 requires a second marking and is removed from the data set.

Find the mean of the remaining 15 test scores.

2. [Maximum mark: 7]

The following diagram shows a circle with centre O and radius 3.

Points A , P and B lie on the circumference of the circle.

Chord [AB] has length L and $\hat{AOB} = \theta$ radians.

(a) Show that arc APB has length
$$6\pi - 3\theta$$
. [2]

(b) Show that
$$L = \sqrt{18 - 18\cos\theta}$$
. [2]

Arc APB is twice the length of chord $\begin{bmatrix}AB\end{bmatrix}$.

(c) Find the value of
$$\theta$$
. [3]

3. [Maximum mark: 5]

A particle moves in a straight line such that its velocity, v ms⁻¹, at time t seconds is given by $v = 4t^2 - 6t + 9 - 2\sin(4t)$, $0 \le t \le 1$.

The particle's acceleration is zero at t = T.

(a) Find the value of
$$T$$
.

Let s_1 be the distance travelled by the particle from t=0 to t=T and let s_2 be the distance travelled by the particle from t=T to t=1.

(b) Show that
$$s_2 > s_1$$
. [3]

4. [Maximum mark: 8]

The following table shows the systolic blood pressures, p mmHg, and the ages, t years, of 6 male patients at a medical clinic.

Patient	P1	P2	Р3	P4	P5	P6
t (years)	40	72	35	47	21	61
p (mmHg)	105	145	100	130	95	132

- (a) (i) Determine the value of Pearson's product-moment correlation coefficient, r, for these data. [2]
 - (ii) Interpret, in context, the value of r found in part (a) (i). [1]

The relationship between t and p can be modelled by the regression line of p on t with equation p = at + b.

(b) Find the equation of the regression line of
$$p$$
 on t . [2]

A 50-year-old male patient enters the medical clinic for his appointment.

(c) Use the regression equation from part (b) to predict this patient's systolic blood pressure. [2]

A 16-year-old male patient enters the medical clinic for his appointment.

- (d) Explain why the regression equation from part (b) should not be used to predict this patient's systolic blood pressure. [1]
- **5.** [Maximum mark: 5]

The quadratic equation $(k-1)x^2 + 2x + (2k-3) = 0$, where $k \in \mathbb{R}$, has real distinct roots. Find the range of possible values for k.

6. [Maximum mark: 7]

Consider the curves $y = x^2 \sin x$ and $y = -1 - \sqrt{1 + 4(x+2)^2}$ for $-\pi \le x \le 0$.

- (a) Find the x-coordinates of the points of intersection of the two curves. [3]
- (b) Find the area, A, of the region enclosed by the two curves. [4]

Section B [44 marks]

7. [Maximum mark: 12]

Helen and Jane both commence new jobs each starting on an annual salary of \$70,000. At the start of each new year, Helen receives an annual salary increase of \$2400.

Let $\$H_n$ represent Helen's annual salary at the start of her nth year of employment.

(a) Show that
$$H_n = 2400n + 67600$$
. [2]

At the start of each new year, Jane receives an annual salary increase of 3% of her previous year's annual salary.

Jane's annual salary, $\$J_n$, at the start of her nth year of employment is given by $J_n = 70~000 \big(1.03\big)^{n-1}$.

- (b) Given that J_n follows a geometric sequence, state the value of the common ratio, r.[1]
- (c) At the start of year N, Jane's annual salary exceeds Helen's annual salary for the first time.
 - (i) Find the value of N.
 - (ii) For the value of N found in part (c) (i), state Helen's annual salary and Jane's annual salary, correct to the nearest dollar. [5]
- (d) Find Jane's total earnings at the start of her 10th year of employment. Give your answer correct to the nearest dollar. [4]

8. [Maximum mark: 15]

The time, T minutes, taken to complete a jigsaw puzzle can be modelled by a normal distribution with mean μ and standard deviation 8.6.

It is found that 30% of times taken to complete the jigsaw puzzle are longer than 36.8 minutes.

(a) By stating and solving an appropriate equation, show, correct to two decimal places, that $\mu = 32.29$. [4]

Use $\mu = 32.29$ in the remainder of the question.

- (b) Find the 86th percentile time to complete the jigsaw puzzle. [2]
- (c) Find the probability that a randomly chosen person will take more than 30 minutes to complete the jigsaw puzzle. [2]

Six randomly chosen people complete the jigsaw puzzle.

(d) Find the probability that at least five of them will take more than 30 minutes to complete the jigsaw puzzle. [3]

Having spent 25 minutes attempting the jigsaw puzzle, a randomly chosen person had not yet completed the puzzle.

- (e) Find the probability that this person will take more than 30 minutes to complete the jigsaw puzzle. [4]
- 9. [Maximum mark: 17]

The temperature $T \circ C$ of water t minutes after being poured into a cup can be modelled by $T = T_0 e^{-kt}$ where $t \ge 0$ and T_0, k are positive constants.

The water is initially boiling at 100 °C. When t = 10, the temperature of the water is 70 °C.

(a) Show that
$$T_0 = 100$$
. [1]

(b) Show that
$$k = \frac{1}{10} \ln \frac{10}{7}$$
. [3]

- (c) Find the temperature of the water when t = 15. [2]
- (d) Sketch the graph of T versus t, clearly indicating any asymptotes with their equations and stating the coordinates of any points of intersection with the axes. [4]
- (e) Find the time taken for the water to have a temperature of $50^{\circ}\mathrm{C}$. Give your answer correct to the nearest second. [4]

The model for the temperature of the water can also be expressed in the form $T=T_0a^{\frac{t}{10}}$ for $t\geq 0$ and a is a positive constant.

(f) Find the exact value of a. [3]