

International Baccalaureate® Baccalauréat International Bachillerato Internacional

Mathematics: analysis and approaches Practice HL paper 3 questions

For first examinations in 2021

Compactness

[31 marks]

This question asks you to investigate compactness, a quantity that measures how compact an enclosed region is.

The compactness, C, of an enclosed region can be defined by $C = \frac{4A}{\pi d^2}$, where A is the area of the region and d is the maximum distance between any two points in the region.

(a) Verify that
$$C = 1$$
 for a circular region. [2]

Consider a rectangle whose side lengths are in the ratio x:1.

(b) Show that
$$C = \frac{4x}{\pi(1+x^2)}$$
. [3]

(c) Show that
$$\frac{dC}{dx} = \frac{4(1-x^2)}{\pi(1+x^2)^2}$$
. [2]

(d) (i) Hence find the value of χ which gives maximum compactness for a rectangle.

(ii) Identify the geometrical significance of this result. [3]

Consider an equilateral triangle of side length X units.

- (e) Find an expression, in terms of χ , for the area of this equilateral triangle. [2]
- (f) Hence find the exact value of C for an equilateral triangle. [3]

Consider a regular polygon of n sides constructed such that its vertices lie on the circumference of a circle of radius r units.

- (g) If n > 2 and even, show that $C = \frac{n}{2\pi} \sin \frac{2\pi}{n}$. [4]
- (h) Illustrate, with the aid of a diagram, that $d \neq 2r$ when \hbar is odd.

If
$$n > 1$$
 and odd, it can be shown that $C = \frac{n \sin \frac{2\pi}{n}}{\pi \left(1 + \cos \frac{\pi}{n}\right)}$.

(i) Find the regular polygon with the least number of sides for which the compactness is more than 0.995.

[5]

[6]

[1]

International Baccalaureate Baccalauréat International Bachillerato Internacional

- (j) (i) For n even, use L'Hopital's rule or otherwise to show that $\lim C = 1$.
 - (ii) Using your answer to part (i) show that $\lim C = 1$, for n > 1 and odd.
 - (iii) Interpret geometrically the significance of parts (i) and (ii).

1

Compactness markscheme:

(a)
$$A = \pi r^2$$
 (A1)

substituting correctly
$$A = \pi r^2$$
 into $C = \frac{4A}{\pi d^2}$ gives $C = \frac{4\pi r^2}{\pi (2r)^2}$ M1

leading to
$$C = 1$$

AG

[2 marks]

(b)
$$A = x \text{ and } d = \sqrt{1 + x^2} (\Rightarrow d^2 = 1 + x^2)$$
 (A1)

substituting correctly
$$A = x$$
 and $d = \sqrt{1 + x^2} (\Longrightarrow d^2 = 1 + x^2)$ into $C = \frac{4A}{\pi d^2}$ M1

$$C = \frac{4x}{\pi(1+x^2)}$$
 AG

[3 marks]

М1

(c) Attempting to use the quotient (or product) rule

$$\frac{\mathrm{d}C}{\mathrm{d}x} = \frac{4\left(\left(1+x^2\right)-x(2x)\right)}{\pi\left(1+x^2\right)^2} \text{ (or equivalent)}$$

$$\frac{\mathrm{d}C}{\mathrm{d}x} = \frac{4\left(1-x^2\right)}{\pi\left(1+x^2\right)^2} \qquad \qquad \mathbf{AG}$$

(M1)

(d) (i)
$$\frac{dC}{dx} = \frac{4(1-x^2)}{\pi(1+x^2)^2} = 0 \Longrightarrow (1-x^2) = 0$$

$$\Rightarrow x = 1 \ (x > 0)$$

Note: Do not accept $x = \pm 1$ as a final answer.

(ii) The most compact rectangle is a square

[3 marks]

A1

(e)
$$A = \frac{1}{2}x^2 \sin \frac{\pi}{3} \left(= \frac{\sqrt{3}x^2}{4} \right)$$

M1A1

[2 marks]

(f) d = x (for an equilateral triangle)

substituting correctly
$$A = \frac{1}{2}x^2 \sin \frac{\pi}{3} \left(= \frac{\sqrt{3}x^2}{4} \right)$$
 and $d = x$ into $C = \frac{4A}{\pi d^2}$

$$C = \frac{4\frac{\sqrt{3x^2}}{4}}{\pi x^2}$$
$$= \frac{\sqrt{3}}{\pi}$$

Note: Award (A0)(M0)A1 if $C = \frac{\sqrt{3}}{\pi}$ is obtained by substituting n = 3 into $C = \frac{n \sin \frac{2\pi}{n}}{\pi \left(1 + \cos \frac{\pi}{n}\right)}$.

(g) Attempt to use
$$A = \frac{1}{2}ab\sin C$$
 with $a = b = r$ and $\theta = \frac{2\pi}{n}$ (M1)

each triangle has area
$$\frac{1}{2}r^2\sin\frac{2\pi}{n}$$
 A1

(there are *l* triangles so)
$$A = \frac{1}{2}nr^2 \sin \frac{2\pi}{n}$$
 A1

$$C = \frac{4\left(\frac{1}{2}nr^2\sin\frac{2\pi}{n}\right)}{\pi(2r)^2}$$
 A1

leading to
$$C = \frac{n}{2\pi} \sin \frac{2\pi}{n}$$
 AG

[4 marks]

(h) Appropriate diagram showing that the length d is not a diameter when n is odd

[1 mark]

A1

(i) Attempting to find the least value of
$$n$$
 such that $\frac{n}{2\pi} \sin \frac{2\pi}{n} > 0.995$ (M1)

Bachillerato Internacional

International Baccalaureate Baccalauréat International

М1

A1

A1

A1

attempting to find the least value of n such that $\frac{n \sin \frac{2\pi}{n}}{\pi \left(1 + \cos \frac{\pi}{n}\right)} > 0.995$ (M1)

Hence a regular 29-sided polygon has the least number of sides such that ${\it C} > 0.995$

Note: Award (M0)A0(M1)A1 if $\frac{n}{2\pi} \sin \frac{2\pi}{n} > 0.995$ is not considered and $\frac{n \sin \frac{2\pi}{n}}{\pi \left(1 + \cos \frac{\pi}{n}\right)} > 0.995$ is correctly

considered. Award (M1)A1(M0)A0 for n = 37 as a final answer.

[5 marks]

(j) (i) Consider
$$\lim_{n \to \infty} \frac{n}{2\pi} \sin \frac{2\pi}{n} = \lim_{n \to \infty} \left(\frac{\sin \frac{2\pi}{n}}{\frac{2\pi}{n}} \right)$$
 M1

EITHER

$$= \lim_{n \to \infty} \left(\frac{-\frac{2\pi}{n^2} \cos \frac{2\pi}{n}}{-\frac{2\pi}{n^2}} \right)$$

$$= \lim_{n \to \infty} \left(\cos \frac{2\pi}{n} \right)$$
M1A1

OR

$$\theta = \frac{2\pi}{n}, \text{ as } n \to \infty, \theta \to 0$$

$$\lim_{n \to \infty} \left(\frac{\sin \frac{2\pi}{n}}{\frac{2\pi}{n}} \right) = \lim_{\theta \to 0} \frac{\sin \theta}{\theta}$$
A1

THEN

Note: Allow use of Maclaurin series.

(ii) Consider
$$\lim_{n \to \infty} C = \lim_{n \to \infty} \frac{n \sin \frac{2\pi}{n}}{\pi \left(1 + \cos \frac{\pi}{n}\right)}$$
$$= \lim_{n \to \infty} \left(\frac{n \sin \frac{2\pi}{n}}{2\pi} \times \frac{2}{\left(1 + \cos \frac{\pi}{n}\right)} \right)$$
$$= \left(1 \times \frac{2}{2}\right)$$
M1

(iii) As $n \to \infty$, the polygon becomes a circle with compactness = 1 **A1**

[6 marks]

Total [31 marks]

Gaussian integers

[30 marks]

A **Gaussian integer** is a complex number, z, such that z = a + bi where $a, b \in \mathbb{Z}$. In this question, you are asked to investigate certain divisibility properties of Gaussian integers.

Consider two Gaussian integers, $\alpha = 3 + 4i$ and $\beta = 1 - 2i$, such that $\gamma = \alpha\beta$ for some Gaussian integer γ .

Now consider two Gaussian integers, $\alpha = 3 + 4i$ and $\gamma = 11 + 2i$.

(b) Determine whether $\frac{\gamma}{\alpha}$ is a Gaussian integer. [3]

The norm of a complex number z, denoted by N(z), is defined by $N(z) = |z|^2$. For example, if z = 2 + 3i then $N(2+3i) = 2^2 + 3^2 = 13$.

- (c) On an Argand diagram, plot and label all Gaussian integers that have a norm less than 3.
- (d) Given that $\alpha = a + bi$ where $a, b \in \mathbb{Z}$, show that $N(\alpha) = a^2 + b^2$.

A Gaussian prime is a Gaussian integer, z, that cannot be expressed in the form $z = \alpha\beta$ where α, β are Gaussian integers with $N(\alpha), N(\beta) > 1$.

(e) By expressing the positive integer $n = c^2 + d^2$ as a product of two Gaussian integers each of norm $c^2 + d^2$, show that \hbar is not a Gaussian prime. [3]

The positive integer 2 is a prime number, however it is not a Gaussian prime.

- (f) Verify that 2 is not a Gaussian prime.
- (g) Write down another prime number of the form $c^2 + d^2$ that is not a Gaussian prime and express it as a product of two Gaussian integers. [2]

Let α, β be Gaussian integers.

(h) Show that $N(\alpha\beta) = N(\alpha)N(\beta)$. [6]

The result from part (h) provides a way of determining whether a Gaussian integer is a Gaussian prime.

- (i) Hence show that 1+4i is a Gaussian prime. [3]
- (j) Use proof by contradiction to prove that a prime number, p, that is not of the form $a^2 + b^2$ is a Gaussian prime. [6]

_ _

[2]

[1]

[2]

Gaussian integers markscheme:

(a)
$$(3+4i)(1-2i)=11-2i$$
 (M1)A1

(b)
$$\frac{\gamma}{\alpha} = \frac{41}{25} - \frac{38}{25}i$$
 (M1)A1

(Since
$$\operatorname{Re} \frac{\gamma}{\alpha} \left(= \frac{41}{25} \right)$$
 and/or $\operatorname{Im} \frac{\gamma}{\alpha} \left(= -\frac{38}{25} \right)$ are not integers)

$$\frac{\gamma}{\alpha}$$
 is not a Gaussian integer **R1**

Note: Award R1 for correct conclusion from their answer.

		[3 marks]
(c)	$\pm 1, \pm i, 0$ plotted and labelled	A1
	$1\pm i, -1\pm i$ plotted and labelled	A1

Note: Award A1A0 if extra points to the above are plotted and labelled.

[2 marks]

(d)
$$|z| = \sqrt{a^2 + b^2}$$
 (and as $N(z) = |z|^2$) **A1**

then
$$N(z) = a^2 + b^2$$
 AG

(e)
$$c^2 + d^2 = (c + di)(c - di)$$
 A1

and
$$N(c+di) = N(c-di) = c^2 + d^2$$
 R1

$$N(c+di), N(c-di) > 1$$
 (since c, d are positive) **R1**

so
$$c^2 + d^2$$
 is not a Gaussian prime, by definition

[3 marks]

AG

(f)
$$2(=1^2+1^2)=(1+i)(1-i)$$
 (A1)

$$N(1+i) = N(1-i) = 2$$
 A1

so
$$2$$
 is not a Gaussian prime

[2 marks]

AG

(g) For example,
$$5(=1^2+2^2)=(1+2i)(1-2i)$$

[2 marks]

(M1)A1

(h) METHOD 1

Let $\alpha = m + ni$ and $\beta = p + qi$

LHS:

$$\alpha\beta = (mp - nq) + (mq + np)i$$
M1

$$N(\alpha\beta) = (mp - nq)^{2} + (mq + np)^{2}$$
 A1

$$(mp)^{2} - 2mnpq + (nq)^{2} + (mq)^{2} + 2mnpq + (np)^{2}$$
 A1

$$(mp)^{2} + (nq)^{2} + (mq)^{2} + (np)^{2}$$
 A1

RHS:

$$N(\alpha)N(\beta) = (m^{2} + n^{2})(p^{2} + q^{2})$$
M1

$$(mp)^{2} + (mq)^{2} + (np)^{2} + (nq)^{2}$$
 A1

LHS = RHS and so
$$N(\alpha\beta) = N(\alpha)N(\beta)$$
 AG

METHOD 2

Let $\alpha = m + ni$ and $\beta = p + qi$

LHS

$$N(\alpha\beta) = (m^2 + n^2)(p^2 + q^2)$$
 M1

$$= (m+ni)(m-ni)(p+qi)(p-qi)$$
A1

$$= (m+ni)(p+qi)(m-ni)(p-qi)$$

= $((mp-nq)+(mq+np)i)((mp-nq)-(mq+np)i)$ M1A1

$$= (mp - nq)^{2} + (mq + np)^{2}$$
 A1

$$= N((mp - nq) + (mq + np)i)$$
 A1

$$= N(\alpha)N(\beta)$$
 (= RHS) AG

[6 marks]

	B	International Baccalaureate Baccalauréat International Bachillerato Internacional
(i)	$Nig(1\!+\!4iig)\!=\!17$ which is a prime (in \mathbb{Z})	R1
	if $1 + 4i = \alpha\beta$ then $17 = N(\alpha\beta) = N(\alpha)N(\beta)$	R1
	we cannot have $N(lpha),N(eta)\!>\!1$	R1

Note: Award R1 for stating that 1+4i is not the product of Gaussian integers of smaller norm because no such norms divide 17 .

so
$$1+4i$$
 is a Gaussian prime **AG**

[3 marks]

(j) Assume p is not a Gaussian prime

 $\Rightarrow p = \alpha \beta$ where α, β are Gaussian integers and $N(\alpha), N(\beta) > 1$

$$\Rightarrow N(p) = N(\alpha)N(\beta)$$
 M1

$$p^2 = N(\alpha)N(\beta)$$
 A1

It cannot be
$$N(\alpha) = 1, N(\beta) = p^2$$
 from definition of Gaussian prime **R1**

hence
$$N(\alpha) = p, N(\beta) = p$$

If
$$\alpha = a + bi$$
 then $N(\alpha) = a^2 + b^2 = p$ which is a contradiction **R1**

hence a prime number, p, that is not of the form $a^2 + b^2$ is a Gaussian prime **AG**

[6 marks]

Total [30 marks]