

International Baccalaureate® Baccalauréat International Bachillerato Internacional

Mathematics: analysis and approaches Practice HL paper 3 questions

For first examinations in 2021

[31 marks]

This question asks you to investigate compactness, a quantity that measures how compact an enclosed region is. The compactness, $|C|$, of an enclosed region can be defined by $|C| = \frac{4A}{\pi d^2}$ π $C = \frac{4A}{\pi d^2}$, where \overline{A} is the area of the region and *d* is the maximum distance between any two points in the region.

(a) Verify that
$$
C = 1
$$
 for a circular region. [2]

Consider a rectangle whose side lengths are in the ratio *x* :1.

(b) Show that
$$
C = \frac{4x}{\pi(1+x^2)}.
$$
 [3]

(c) Show that
$$
\frac{dC}{dx} = \frac{4(1-x^2)}{\pi(1+x^2)^2}
$$
. [2]

(d) (i) Hence find the value of \bar{X} which gives maximum compactness for a rectangle.

(ii) Identify the geometrical significance of this result. [3]

Consider an equilateral triangle of side length *x* units.

- (e) Find an expression, in terms of *, for the area of this equilateral triangle.* $[2]$
- (f) Hence find the exact value of C for an equilateral triangle. $[3]$

Consider a regular polygon of \hbar sides constructed such that its vertices lie on the circumference of a circle of radius *r* units.

(g) If
$$
n > 2
$$
 and even, show that $C = \frac{n}{2\pi} \sin \frac{2\pi}{n}$. [4]

(h) Illustrate, with the aid of a diagram, that $d \neq 2r$ when ℓ is odd. [1]

If
$$
n > 1
$$
 and odd, it can be shown that $C = \frac{n \sin \frac{2\pi}{n}}{\pi \left(1 + \cos \frac{\pi}{n}\right)}$.

(i) Find the regular polygon with the least number of sides for which the compactness is more than 0.995.

[5]

- (j) (i) For \hbar even, use L'Hopital's rule or otherwise to show that $\lim_{n\to\infty}C=1$.
	- (ii) Using your answer to part (i) show that $\lim_{n\to\infty} C = 1$, for $n > 1$ and odd.
	- (iii) Interpret geometrically the significance of parts (i) and (ii). [6]

1

International Baccalaureate Baccalauréat International Bachillerato Internacional

$$
(a) \tA = \pi r^2 \t(A1)
$$

substituting correctly
$$
A = \pi r^2
$$
 into $C = \frac{4A}{\pi d^2}$ gives $C = \frac{4\pi r^2}{\pi (2r)^2}$

$$
leading to C = 1
$$

[2 marks]

(b)
$$
A = x
$$
 and $d = \sqrt{1 + x^2} \left(\Rightarrow d^2 = 1 + x^2 \right)$ (A1)

substituting correctly
$$
A = x
$$
 and $d = \sqrt{1 + x^2} \left(\Rightarrow d^2 = 1 + x^2 \right)$ into $C = \frac{4A}{\pi d^2}$

$$
C = \frac{4x}{\pi(1+x^2)} \qquad \qquad \text{AG}
$$

[3 marks]

(c) Attempting to use the quotient (or product) rule *M1*

$$
\frac{dC}{dx} = \frac{4((1+x^2) - x(2x))}{\pi(1+x^2)^2}
$$
 (or equivalent)

$$
\frac{\mathrm{d}C}{\mathrm{d}x} = \frac{4(1-x^2)}{\pi(1+x^2)^2}
$$

[2 marks]

(M1)

(d) (i)
$$
\frac{dC}{dx} = \frac{4(1-x^2)}{\pi(1+x^2)^2} = 0 \Rightarrow (1-x^2) = 0
$$

$$
\Rightarrow x = 1 \ (x > 0)
$$

Note: Do not accept $x = \pm 1$ as a final answer.

(ii) The most compact rectangle is a square *A1*

[3 marks]

(e)
$$
A = \frac{1}{2}x^2 \sin \frac{\pi}{3} = \frac{\sqrt{3}x^2}{4}
$$

M1A1

[2 marks]

(f) $d = x$ (for an equilateral triangle) (41)

substituting correctly
$$
A = \frac{1}{2}x^2 \sin \frac{\pi}{3} \left(= \frac{\sqrt{3}x^2}{4} \right)
$$
 and $d = x$ into $C = \frac{4A}{\pi d^2}$

$$
C = \frac{4\frac{\sqrt{3x^2}}{4}}{\pi x^2}
$$

$$
= \frac{\sqrt{3}}{\pi}
$$

Note: Award *(A0)(M0)A1* if 3 π $C = \frac{\sqrt{3}}{2}$ is obtained by substituting $n = 3$ into $\sin \frac{2\pi}{2}$ $\pi \left(1 + \cos \frac{\pi}{2} \right)$ *n* $C = \frac{n}{\sqrt{2\pi}}$ $=\frac{n}{\pi\left(1+\cos\frac{\pi}{n}\right)}$.

[3 marks]

A1

(g) Attempt to use
$$
A = \frac{1}{2}ab\sin C
$$
 with $a = b = r$ and $\theta = \frac{2\pi}{n}$ (M1)

each triangle has area
$$
\frac{1}{2}r^2 \sin \frac{2\pi}{n}
$$

(there are *l* triangles so)
$$
A = \frac{1}{2}nr^2 \sin \frac{2\pi}{n}
$$

$$
C = \frac{4\left(\frac{1}{2}nr^2\sin\frac{2\pi}{n}\right)}{\pi(2r)^2}
$$

leading to
$$
C = \frac{n}{2\pi} \sin \frac{2\pi}{n}
$$

[4 marks]

(h) Appropriate diagram showing that the length d is not a diameter when n is odd **A1**

[1 mark]

(i) Attempting to find the least value of
$$
\hbar
$$
 such that $\frac{n}{2\pi} \sin \frac{2\pi}{n} > 0.995$ (M1)

$$
n = 37
$$

International Baccalaureate[®] Baccalauréat International Bachillerato Internacional

A1

attempting to find the least value of *n* such that $\sin \frac{2\pi}{2}$ 0.995 $\pi \left(1 + \cos \frac{\pi}{2} \right)$ *n n* $\left(\frac{n}{1+\cos{\frac{\pi}{n}}}\right)$ *(M1)*

$$
n = 29
$$

Hence a regular 29-sided polygon has the least number of sides such that *C* > 0.995

Note: Award *(M0)AO(M1)A1* if
$$
\frac{n}{2\pi} \sin \frac{2\pi}{n} > 0.995
$$
 is not considered and $\frac{n \sin \frac{2\pi}{n}}{\pi \left(1 + \cos \frac{\pi}{n}\right)} > 0.995$ is correctly

considered. Award *(M1)A1(M0)A0* for *n* = 37 as a final answer.

[5 marks]

(j) (i) Consider
$$
\lim_{n \to \infty} \frac{n}{2\pi} \sin \frac{2\pi}{n} = \lim_{n \to \infty} \left(\frac{\sin \frac{2\pi}{n}}{\frac{2\pi}{n}} \right)
$$

EITHER

$$
= \lim_{n \to \infty} \left(\frac{-\frac{2\pi}{n^2} \cos \frac{2\pi}{n}}{-\frac{2\pi}{n^2}} \right)
$$
\n
$$
= \lim_{n \to \infty} \left(\cos \frac{2\pi}{n} \right)
$$
\nM1A1

OR

$$
\theta = \frac{2\pi}{n}, \text{ as } n \to \infty, \theta \to 0
$$

\n
$$
\lim_{n \to \infty} \left(\frac{\sin \frac{2\pi}{n}}{\frac{2\pi}{n}} \right) = \lim_{\theta \to 0} \frac{\sin \theta}{\theta}
$$

THEN

$$
=1
$$

Note: Allow use of Maclaurin series.

(ii) Consider
$$
\lim_{n \to \infty} C = \lim_{n \to \infty} \frac{n \sin \frac{2\pi}{n}}{\pi \left(1 + \cos \frac{\pi}{n}\right)}
$$

$$
= \lim_{n \to \infty} \left(\frac{n \sin \frac{2\pi}{n}}{2\pi} \times \frac{2}{\left(1 + \cos \frac{\pi}{n}\right)}\right)
$$

$$
= \left(1 \times \frac{2}{2}\right)
$$

$$
=1
$$

(iii) As $n \to \infty$, the polygon becomes a circle with compactness = 1 **A1**

[6 marks]

Total [31 marks]

Gaussian integers

[30 marks]

A Gaussian integer is a complex number, *z*, such that $z = a + bi$ where $a, b \in \mathbb{Z}$. In this question, you are asked to investigate certain divisibility properties of Gaussian integers.

Consider two Gaussian integers, $\alpha = 3 + 4i$ and $\beta = 1 - 2i$, such that $\gamma = \alpha \beta$ for some Gaussian integer γ .

(a) Find
$$
\gamma
$$
. [2]

Now consider two Gaussian integers, $\alpha = 3 + 4i$ and $\gamma = 11 + 2i$.

(b) Determine whether $\frac{\gamma}{\alpha}$ is a Gaussian integer. [3]

The norm of a complex number $_{z}$, denoted by $\,N(z),$ is defined by $\,N(z)\!=\!{\vert z\vert}^{2}$. For example, if $\,z\!=\!2\!+\!3i$ then $N (2 + 3i) = 2^2 + 3^2 = 13$.

- (c) On an Argand diagram, plot and label all Gaussian integers that have a norm less than 3.
- (d) Given that $\alpha = a + bi$ where $a, b \in \mathbb{Z}$, show that $N(\alpha) = a^2 + b^2$.

A Gaussian prime is a Gaussian integer, z, that cannot be expressed in the form $z = \alpha \beta$ where α, β are Gaussian integers with $N(\alpha), N(\beta)$ > 1.

(e) By expressing the positive integer $n = c^2 + d^2$ as a product of two Gaussian integers each of norm $c^2 + d^2$, show that ℓ is not a Gaussian prime. [3]

The positive integer 2 is a prime number, however it is not a Gaussian prime.

- (f) Verify that 2 is not a Gaussian prime. [2]
- (g) Write down another prime number of the form $c^2 + d^2$ that is not a Gaussian prime and express it as a product of two Gaussian integers. **Example 2** is a set of two Gaussian integers. **[2]**

Let α , β be Gaussian integers.

(h) Show that $N(\alpha\beta) = N(\alpha)N(\beta)$. [6]

The result from part (h) provides a way of determining whether a Gaussian integer is a Gaussian prime.

- (i) Hence show that $1+4i$ is a Gaussian prime. [3]
- (j) Use proof by contradiction to prove that a prime number, p , that is not of the form $a^2 + b^2$ is a Gaussian prime. [6] **Gaussian prime.** [6] **Gaussian prime** and the control of the contr

[2]

[1]

(a)
$$
(3+4i)(1-2i) = 11-2i
$$
 (M1)A1

$$
[2 marks]
$$

(b)
$$
\frac{\gamma}{\alpha} = \frac{41}{25} - \frac{38}{25}i
$$
 (M1)

(Since Re
$$
\frac{\gamma}{\alpha} \left(= \frac{41}{25} \right)
$$
 and/or Im $\frac{\gamma}{\alpha} \left(= -\frac{38}{25} \right)$ are not integers)

$$
\frac{\gamma}{\alpha}
$$
 is not a Gaussian integer\n\n
$$
\frac{\gamma}{\alpha}
$$

Note: Award **R1** for correct conclusion from their answer.

Note: Award **A1A0** if extra points to the above are plotted and labelled.

[2 marks]

(d)
$$
|z| = \sqrt{a^2 + b^2}
$$
 (and as $N(z) = |z|^2$)

then
$$
N(z) = a^2 + b^2
$$

$$
[1 mark]
$$

(e)
$$
c^2 + d^2 = (c + di)(c - di)
$$

and
$$
N(c+di) = N(c-di) = c^2 + d^2
$$

$$
N(c+di), N(c-di) > 1
$$
 (since *c*, *d* are positive) *R1*

so
$$
c^2 + d^2
$$
 is not a Gaussian prime, by definition

[3 marks]

(f)
$$
2(=1^2+1^2)=(1+i)(1-i)
$$
 (A1)

$$
N(1+i) = N(1-i) = 2
$$

so
$$
2
$$
 is not a Gaussian prime. AG

[2 marks]

(g) For example,
$$
5(=1^2+2^2)=(1+2i)(1-2i)
$$
 (M1)A1

[2 marks]

(h) **METHOD 1**

Let $\alpha = m + ni$ and $\beta = p + qi$

LHS:

$$
\alpha \beta = (mp - nq) + (mq + np)i
$$

$$
N(\alpha\beta) = (mp-nq)^2 + (mq+np)^2
$$

$$
(mp)^2 - 2mnpq + (nq)^2 + (mq)^2 + 2mnpq + (np)^2
$$

$$
(mp)2 + (nq)2 + (mp)2
$$

RHS:

$$
N(\alpha)N(\beta) = (m^2 + n^2)(p^2 + q^2)
$$

$$
(mp)2 + (mq)2 + (np)2 + (nq)2
$$

LHS = RHS and so
$$
N(\alpha\beta) = N(\alpha)N(\beta)
$$

METHOD 2

Let $\alpha = m + ni$ and $\beta = p + qi$

LHS

$$
N(\alpha\beta) = (m^2 + n^2)(p^2 + q^2)
$$

$$
= (m+ni)(m-ni)(p+qi)(p-qi)
$$

$$
= (m+ni)(p+qi)(m-ni)(p-qi)
$$

=
$$
((mp-nq)+(mq+np)i)((mp-nq)-(mq+np)i)
$$

$$
=(mp-nq)^2+(mq+np)^2
$$

$$
= N((mp-nq) + (mq+np)i)
$$

$$
= N(\alpha) N(\beta) (= RHS)
$$

[6 marks]

Note: Award R1 for stating that $1 + 4i$ is not the product of Gaussian integers of smaller norm because no such norms divide 17 .

so
$$
1+4i
$$
 is a Gaussian prime

[3 marks]

(j) Assume p is not a Gaussian prime

 \Rightarrow $p = \alpha \beta$ where α , β are Gaussian integers and $N(\alpha)$, $N(\beta) > 1$ **M1**

$$
\Rightarrow N(p) = N(\alpha)N(\beta) \qquad \qquad \blacksquare
$$

$$
p^2 = N(\alpha)N(\beta)
$$

It cannot be
$$
N(\alpha) = 1, N(\beta) = p^2
$$
 from definition of Gaussian prime

hence
$$
N(\alpha) = p, N(\beta) = p
$$

If
$$
\alpha = a + bi
$$
 then $N(\alpha) = a^2 + b^2 = p$ which is a contradiction

hence a prime number, p , that is not of the form $a^2 + b^2$ is a Gaussian prime **AG**

[6 marks]

Total [30 marks]