Example 1

Self Tutor

Find the equation of the tangent to $f(x) = \sqrt{x^2 + 5}$ at the point (2, 3).

$$f(x) = \sqrt{x^2 + 5} = (x^2 + 5)^{\frac{1}{2}}$$

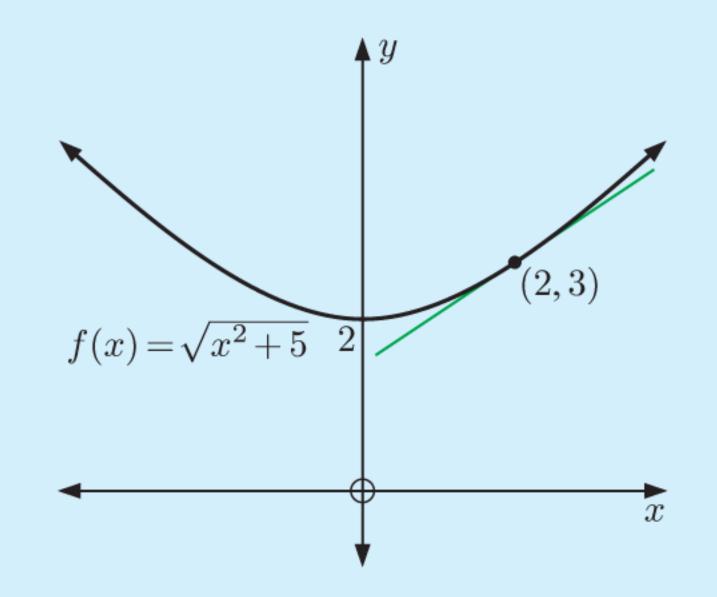
$$f'(x) = \frac{1}{2}(x^2 + 5)^{-\frac{1}{2}}(2x)$$
 {chain rule}
$$= \frac{x}{\sqrt{x^2 + 5}}$$

$$= \frac{x}{\sqrt{x^2 + 5}}$$

$$\therefore f'(2) = \frac{2}{\sqrt{2^2 + 5}} = \frac{2}{3}$$

So, the tangent has equation $y = \frac{2}{3}(x-2) + 3$

$$y = \frac{2}{3}x + \frac{5}{3}$$



Example 2

Self Tutor

Find the equations of any horizontal tangents to $y = x^3 - 12x + 2$.

Since
$$y = x^3 - 12x + 2$$
, $\frac{dy}{dx} = 3x^2 - 12$

Horizontal tangents have gradient 0,

so
$$3x^2 - 12 = 0$$

$$3(x^2-4)=0$$

$$3(x+2)(x-2)=0$$

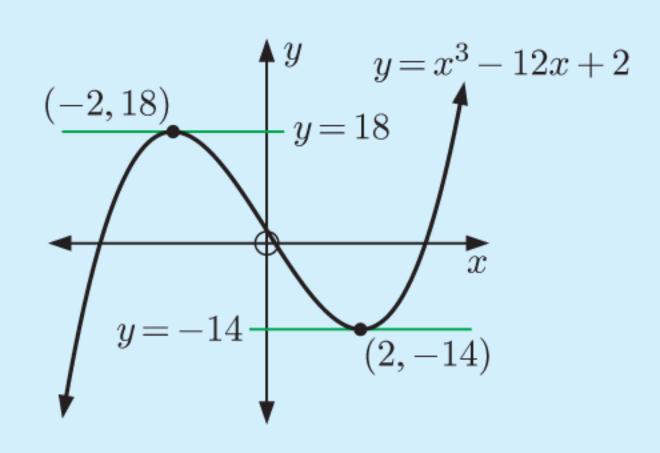
$$\therefore x = -2 \text{ or } 2$$

When x = 2, y = 8 - 24 + 2 = -14

When x = -2, y = -8 + 24 + 2 = 18

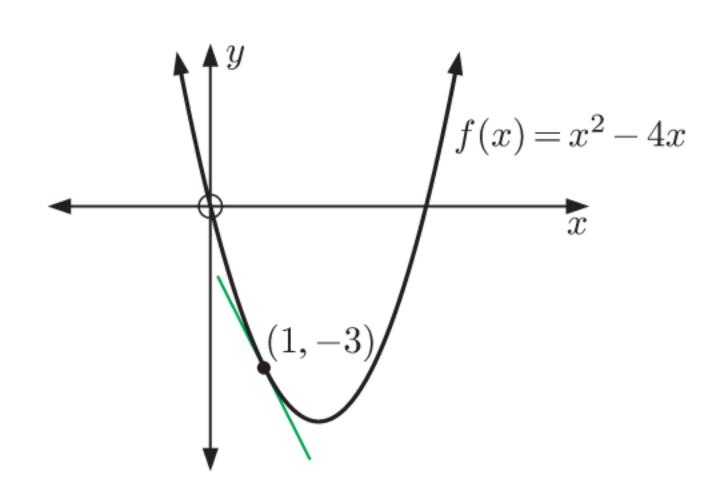
 \therefore the points of contact are (2, -14) and (-2, 18)

 \therefore the tangents are y = -14 and y = 18.



EXERCISE 18A

- 1 The graph of $f(x) = x^2 4x$ is shown alongside.
 - a Find f'(x).
 - b Hence find the equation of the illustrated tangent.



Find the equation of the tangent to:

a
$$y = x - 2x^2 + 3$$
 at $x = 2$

$$y = x^3 - 5x$$
 at $x = 1$

$$y = \frac{3}{x} - \frac{1}{x^2}$$
 at $(-1, -4)$

$$y = \frac{1}{(x^2+1)^2}$$
 at $(1, \frac{1}{4})$

b
$$y = \sqrt{x} + 1$$
 at $x = 4$

d
$$y = \frac{4}{\sqrt{x}}$$
 at (1, 4)

f
$$y = 3x^2 - \frac{1}{x}$$
 at $x = -1$

h
$$y = \frac{1}{\sqrt{3-2x}}$$
 at $x = -3$.

Check your answers using technology.

Find the equations of any horizontal tangents to:

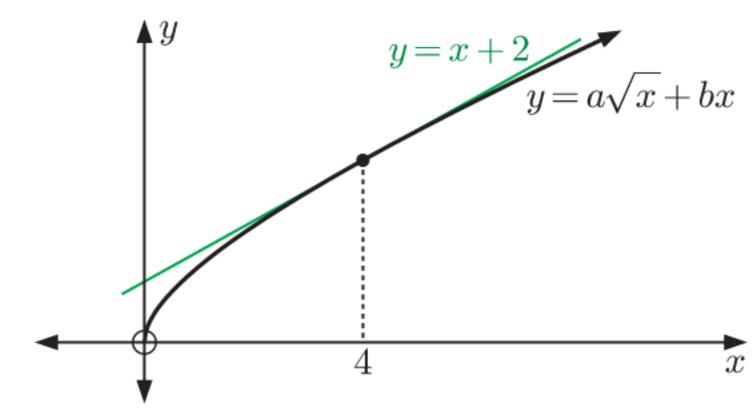
$$y = 2x^3 + 3x^2 - 12x + 1$$

a
$$y = 2x^3 + 3x^2 - 12x + 1$$
 b $y = -x^3 + 3x^2 + 9x - 4$ c $y = \sqrt{x} + \frac{1}{\sqrt{x}}$

$$y = \sqrt{x} + \frac{1}{\sqrt{x}}$$

- The tangent to $y = 2x^3 + kx^2 3$ at the point where x = 2 has gradient 4.
 - \bullet Find k.

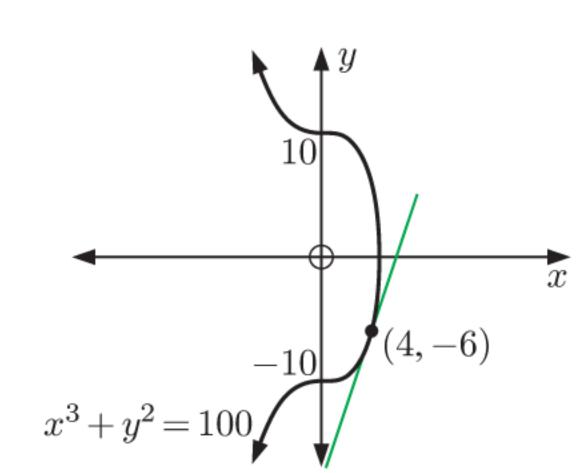
- **b** Hence find the equation of this tangent.
- Find the equation of another tangent to $y = 1 3x + 12x^2 8x^3$ which is parallel to the tangent at (1, 2).
- 6 Consider the curve $y = x^2 + ax + b$ where a and b are constants. The tangent to this curve at the point where x = 1 is 2x + y = 6. Find the values of a and b.
- Find the values of a and b.



- Show that the equation of the tangent to $y = 2x^2 1$ at the point where x = a, is $4ax - y = 2a^2 + 1$.
- Consider the function $f(x) = x^2 + \frac{4}{x^2}$. Show that there is a unique horizontal tangent to the curve which touches the curve twice.
- Consider the curve $y = a\sqrt{1-bx}$ where a and b are constants. The tangent to this curve at the point where x = -1 is 3x + y = 5. Find the values of a and b.
- The tangent to $f(x) = (2x 1)^4$ at x = k has gradient 8.
 - \bullet Find k.

- **b** Find the equation of this tangent.
- Hence find the x-intercept of this tangent.
- The graph of $x^3 + y^2 = 100$ is shown alongside.

 - Find the equation of the illustrated tangent.



- Find the tangents to the unit circle $x^2 + y^2 = 1$ at the points where $x = \frac{1}{2}$.
 - b At which point on the x-axis do these tangents intersect?

Example 3

◄ Self Tutor

Show that the equation of the tangent to $y = \ln x$ at y = -1 is y = ex - 2.

When y = -1, $\ln x = -1$

$$x = e^{-1} = \frac{1}{e}$$

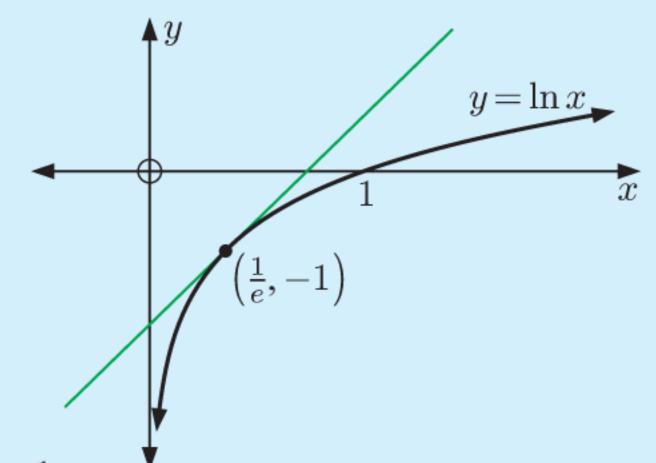
 \therefore the point of contact is $(\frac{1}{e}, -1)$.

Now $f(x) = \ln x$ has derivative $f'(x) = \frac{1}{x}$

... the tangent at $\left(\frac{1}{e}, -1\right)$ has gradient $\frac{1}{\frac{1}{e}} = e$

 \therefore the tangent has equation $y = e(x - \frac{1}{e}) - 1$

which is
$$y = ex - 2$$



14 Find the equation of the tangent to:

a
$$f(x) = e^{-x}$$
 at $x = 2$

b
$$y = \ln(2 - x)$$
 at $x = -1$

$$y = (x+2)e^x$$
 at $x = 1$

d
$$y = \ln \sqrt{x}$$
 at $y = -1$

$$y = e^{3x-5}$$
 at $y = e$.

15 Consider $f(x) = \ln(x(x-2))$.

a State the domain of f(x).

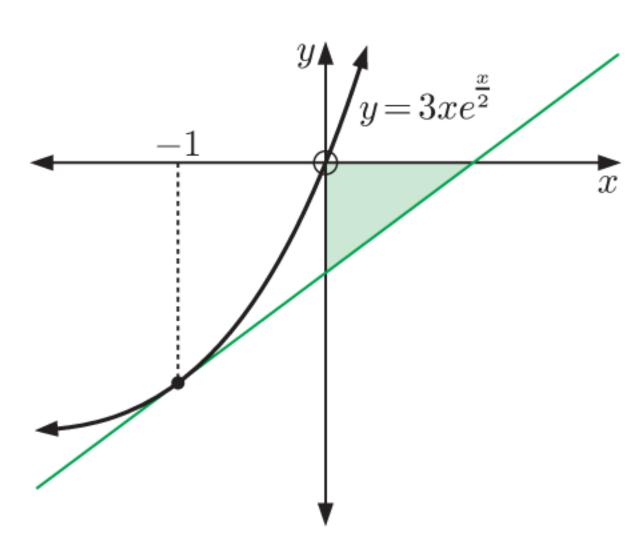
- **b** Find f'(x).
- \mathbf{c} Find the equation of the tangent to y = f(x) at the point where x = 3.
- 16 a Find the y-intercept of the tangent to $f(x) = x \ln x$ at the point where:

$$x=1$$

$$x=2$$

$$x=3$$
.

- Make a conjecture about the y-intercept of the tangent to $f(x) = x \ln x$ at the point where $x = a, \ a > 0$.
- c Prove your conjecture algebraically.
- 17 Find the axes intercepts of the tangent to $y = x^2 e^x$ at x = 1.
- 18 Find the exact area of the shaded triangle.



Example 4

Self Tutor

Find the equation of the tangent to $y = \tan x$ at the point where $x = \frac{\pi}{4}$.

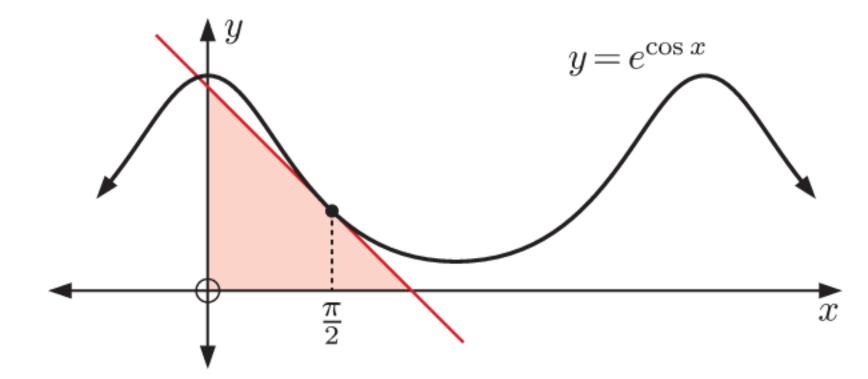
When $x = \frac{\pi}{4}$, $y = \tan \frac{\pi}{4} = 1$

 \therefore the point of contact is $(\frac{\pi}{4}, 1)$.

Now $f(x) = \tan x$ has derivative $f'(x) = \sec^2 x$

- \therefore the tangent at $(\frac{\pi}{4}, 1)$ has gradient $\frac{1}{\cos^2(\frac{\pi}{4})} = \frac{1}{\frac{1}{2}} = 2$
- \therefore the tangent has equation $y = 2(x \frac{\pi}{4}) + 1$ which is $y = 2x + (1 - \frac{\pi}{2})$
- Find the equation of the tangent to:
 - a $y = \sin x$ at the origin
 - $y = \cos x$ at $x = \frac{\pi}{6}$
 - $y = \cos 2x + 3\sin x$ at $x = \frac{\pi}{2}$.
- b $y = \tan x$ at the origin
- $\mathbf{d} \quad y = \frac{1}{\sin 2x} \quad \text{at} \quad x = \frac{\pi}{4}$
- Show that the curve with equation $y = \frac{\cos x}{1 + \sin x}$ does not have any horizontal tangents.

The graph of $y = e^{\cos x}$ is shown alongside. Find the area of the shaded triangle.



- Find the equation of the tangent to:
 - a $y = \sec x$ at $x = \frac{\pi}{4}$
 - $y = \arctan x$ at x = 1

- b $y = \cot \frac{x}{2}$ at $x = \frac{\pi}{3}$
- d $y = x \arccos \frac{x}{2}$ at x = -1

Example 5

Self Tutor

Find where the tangent to $y = x^3 + x + 2$ at (1, 4) meets the curve again.

Let $f(x) = x^3 + x + 2$

$$f'(x) = 3x^2 + 1$$
 and $f'(1) = 3 + 1 = 4$

the equation of the tangent at (1, 4) is 4x - y = 4(1) - 4or y = 4x.

The curve meets the tangent again when $x^3 + x + 2 = 4x$

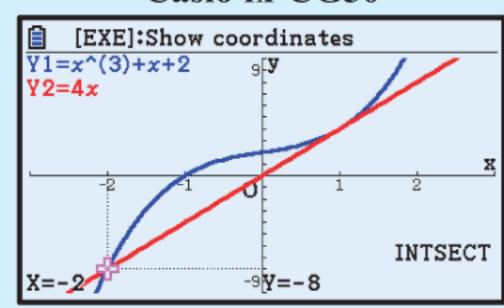
$$\therefore x^3 - 3x + 2 = 0$$

$$(x-1)^2(x+2) = 0$$

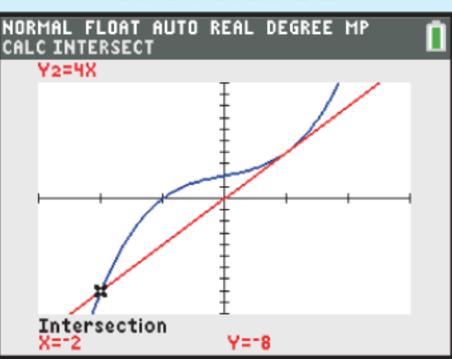
 $(x-1)^2$ must be a factor of $x^3 - 3x + 2 = 0$ since we are using the *tangent* at x = 1.

 \therefore the tangent meets the curve again at (-2, -8).

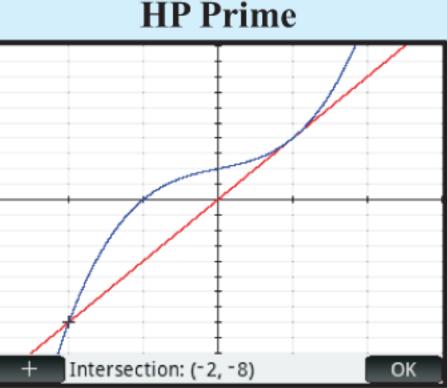
Casio fx-CG50



TI-84 Plus CE



481



- Find where the tangent to the curve $y = x^3$ at the point where x = 2, meets the curve again.
- Find where the tangent to the curve $y = -x^3 + 2x^2 + 1$ at the point where x = -1, meets the curve again.
- Find where the tangent to the curve $y = \frac{1}{x} \frac{1}{x^2}$ at the point where x = 1, meets the curve again.
- **26** Let $P(x) = x^3 3x^2 x + 3$.
 - Show that x = 1 is a zero of P(x), and find the three real zeros.
 - Sketch the graph of y = P(x).
 - Find the equation of the tangent to y = P(x) at the point where x = 2.
 - Find where the tangent in crosses the curve again.
 - Suppose a cubic has zeros a, b, and c with a < b < c. Prove that the tangent to the cubic at $x = \frac{a+b}{2}$ meets the cubic again at x = c.

Example 6

Self Tutor

Find the equations of the tangents to $y = -x^2 + x + 2$ which pass through (1, 3).

Let $(a, -a^2 + a + 2)$ be a general point on the curve.

Now $\frac{dy}{dx} = -2x + 1$

- the gradient of the tangent when x = a is -2a + 1
- the equation of the tangent at $(a, -a^2 + a + 2)$ is $y = (-2a + 1)(x a) + (-a^2 + a + 2)$ which is $y = (1 - 2a)x + a^2 + 2$

The tangents which pass through (1, 3) must satisfy $(1 - 2a)(1) + a^2 + 2 = 3$

$$\therefore a^2 - 2a = 0$$

$$a(a-2) = 0$$

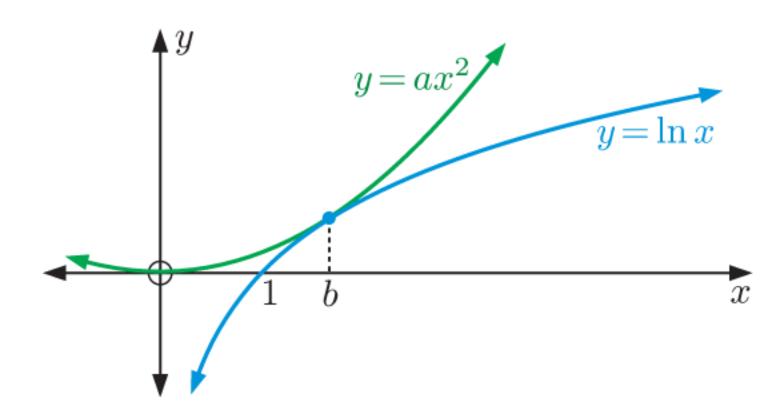
$$\therefore a = 0 \text{ or } 2$$

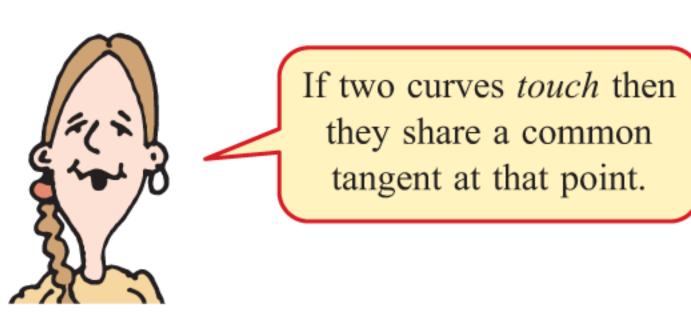
two tangents pass through the external point (1, 3).

If a = 0, the tangent has equation y = x + 2 with point of contact (0, 2).

If a=2, the tangent has equation y=-3x+6 with point of contact (2,0).

- Find the equation of the tangent to $y = x^2 x + 9$ at the point where x = a.
 - b Hence find the equations of the two tangents from (0, 0) to the curve. State the coordinates of the points of contact.
- 28 a Find the equation of the tangent to $y = x^2 + 4x$ at the point where x = a.
 - b Hence find the equations of the tangents to $y = x^2 + 4x$ which pass through the external point (1, -4). State the coordinates of the points of contact.
- 29 Find the equations of the tangents to $y = x^2 3x + 1$ which pass through (1, -10).
- Find the equation of the tangent to $y = e^x$ at the point where x = a.
 - b Hence find the equation of the tangent to $y = e^x$ which passes through the origin.
- 31 Consider the function $y = 2x^2$.
 - a Find the equations of the tangents to the function from the external point (1, -6).
 - b Find the points of contact for the tangents.
 - \bullet Show that no tangents to the function pass through the point (1, 4).
 - d Draw a graph of $y = 2x^2$ showing the information above.
- 32 Consider $f(x) = \frac{8}{x^2}$.
 - a Sketch the graph of the function.
 - **b** Find the equation of the tangent at the point where x = a.
 - c If the tangent in b cuts the x-axis at A and the y-axis at B, find the coordinates of A and B.
 - d Find the area of triangle OAB and discuss the area of the triangle as $a \to \infty$.
- The graphs of $y = \sqrt{x+a}$ and $y = \sqrt{2x-x^2}$ have the same gradient at their point of intersection. Find a and the point of intersection.
- Find, correct to 2 decimal places, the angle between the tangents to $y = 3e^{-x}$ and $y = 2 + e^x$ at their point of intersection.
- A quadratic of the form $y = ax^2$, a > 0, touches the logarithmic function $y = \ln x$ as shown.
 - If the x-coordinate of the point of contact is b, explain why $ab^2 = \ln b$ and $2ab = \frac{1}{b}$.
 - **b** Deduce that the point of contact is $(\sqrt{e}, \frac{1}{2})$.
 - lacktriangle Find the value of a.
 - d Find the equation of the common tangent.





- 36 Let $p(x) = ax^2$, $a \neq 0$.
 - a Find the equations of the tangents to the curve at x=s and x=t.
 - b Prove that the two tangent lines intersect at $x = \frac{s+t}{2}$.
 - Prove that if the tangent lines are perpendicular then they intersect at $y = -\frac{1}{4a}$.

2 a
$$\frac{dy}{dx} = 6x^2 - 12x + 7$$

$$\frac{dy}{dx} = -\frac{3}{x^2} + \frac{15}{x^4}$$

$$\frac{dy}{dx} = -\frac{5}{x^{\frac{4}{3}}}$$

3 a
$$f(3) = -17$$

3 a
$$f(3) = -17$$
 b $f'(3) = -17$ c $f''(3) = -6$

4 a
$$\frac{dy}{dx} = 3x^2(1-x^2)^{\frac{1}{2}} - x^4(1-x^2)^{-\frac{1}{2}}$$

$$\frac{dy}{dx} = \frac{(2x-3)(x+1)^{\frac{1}{2}} - \frac{1}{2}(x^2 - 3x)(x+1)^{-\frac{1}{2}}}{x+1}$$

5 **a**
$$\frac{dy}{dx} = e^x + xe^x$$
 b $(1, e)$

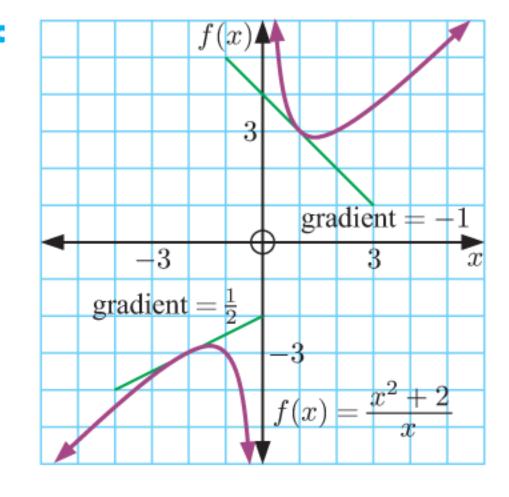
6 a
$$f'(x) = \frac{e^x}{e^x + 3}$$
 b $f'(x) = \frac{3}{x+2} - \frac{1}{x}$

b
$$f'(x) = \frac{3}{x+2} - \frac{1}{x}$$

$$f'(x) = x^{x^2+1}(2\ln x + 1)$$

7 a
$$f'(x) = 1 - \frac{2}{x^2}$$
 c

 $\frac{1}{2}$



8 when
$$x = 1$$
, $\frac{dy}{dx} = 0$

9 a
$$\frac{dy}{dx} = \frac{3x^2 - 3}{x^3 - 3x}$$
 b $\frac{dy}{dx} = \frac{e^x(x - 2)}{x^3}$

$$\frac{dy}{dx} = \frac{e^x(x-2)}{x^3}$$

$$\frac{dy}{dx} = \frac{e^{x+y}(y^2+1)}{2y - e^{x+y}(y^2+1)}$$

10 a
$$f'(x) = 2^{x^2 - 5x} \ln 2 \times (2x - 5)$$

$$f'(x) = \frac{\csc x \sec x}{\ln 10}$$

$$f'(x) = -\frac{1}{\ln 3} \left(\frac{1}{x+5} + \frac{1}{x-4} \right)$$

11 a
$$f''(x) = 24x^2 - 24x - 18$$
 b $x = -\frac{1}{2}$ or $\frac{3}{2}$

b
$$x = -\frac{1}{2}$$
 or $\frac{3}{2}$

12 a
$$10 - 10\cos 10x$$

$$b \tan x$$

$$(5\cos 5x)\ln(2x) + \frac{\sin 5x}{x}$$

13 a
$$\frac{28}{9}$$

13 a
$$\frac{28}{9}$$
 b 8 14 $a=4,\ b=e^2$

15 a
$$-\frac{1}{4}$$
 b Hint: Show that $\frac{dy}{dx} = -\frac{2\sin x + 1}{(\sin x + 2)^2}$.

16 b i
$$x = \frac{1}{2}$$
 ii $x \le 0$

18 a
$$\frac{dy}{dx} = -\frac{1}{4}\operatorname{cosec}^2\left(\frac{x}{4}\right)$$

$$\frac{dy}{dx} = x \sec 3x (3x \tan 3x + 2)$$

$$\frac{dy}{dx} = -e^{-x}\operatorname{cosec}(e^x)[e^x \cot(e^x) + 1]$$

$$\frac{dy}{dx} = \frac{5}{\sqrt{1 - 25x^2}}$$

$$\frac{dy}{dx} = 2e^{2x} \left(\arctan 2x + \frac{1}{1 + 4x^2} \right)$$

$$\frac{dy}{dx} = -\frac{\sec^2 x}{\sqrt{1 - \tan^2 x}}$$

2 a
$$\frac{dy}{dx} = 6x^2 - 12x + 7$$
 b $\frac{dy}{dx} = -\frac{3}{x^2} + \frac{15}{x^4}$ 19 a $\frac{d^2y}{dx^2} = -\frac{10}{(1-2x)^3}$ b $\frac{d^2y}{dx^2} = 6x + \frac{3}{4}x^{-\frac{5}{2}}$

$$\frac{d^2y}{dx^2} = 6x + \frac{3}{4}x^{-\frac{5}{2}}$$

$$\frac{d^2y}{dx^2} = -\frac{3^x(\ln 3)^2 \times 20}{(20 - 3^x)^2 \times \ln 2}$$

21 **a**
$$x = -6 \pm \sqrt{33}$$
 b $x = \pm \sqrt{3}$ **c** $x = -3, 0, \text{ or } 3$

22 **a**
$$f(x) = -5\sin 4x$$
 b $x = \frac{\pi}{8}, \frac{3\pi}{8}, \frac{5\pi}{8}, \text{ or } \frac{7\pi}{8}$

23 a
$$\frac{dy}{dx} = \frac{y^2 - e^x y}{e^x - 2xy}$$
 b 0

27 a
$$f'(x) = e^{ax}(ax+1)$$
, $f''(x) = ae^{ax}(ax+2)$, $f'''(x) = a^2e^{ax}(ax+3)$, $f^{(4)}(x) = a^3e^{ax}(ax+4)$ b $f^{(n)}(x) = a^{n-1}e^{ax}(ax+n)$

EXERCISE 18A

1 a
$$f'(x) = 2x - 4$$
 b $y = -2x - 1$

2 a
$$y = -7x + 11$$
 b $y = \frac{1}{4}x + 2$ c $y = -2x - 2$

d
$$y = -2x + 6$$
 e $y = -5x - 9$ **f** $y = -5x - 1$

$$y = \frac{3}{4} - \frac{1}{2}x$$
 $y = \frac{1}{27}x + \frac{4}{9}$

3 a
$$y = 21$$
 and $y = -6$ b $y = 23$ and $y = -9$

$$y=2$$

4 a
$$k = -5$$
 b $y = 4x - 15$ 5 $y = -3x + 1$

6
$$a = -4$$
, $b = 7$ **7** $a = 2$, $b = \frac{1}{2}$ **10** $a = 4$, $b = 3$

11 a
$$k = 1$$
 b $y = 8x - 7$ c $\frac{7}{8}$

12 a
$$\frac{dy}{dx} = -\frac{3x^2}{2y}$$
 b $y = 4x - 22$

13 **a**
$$y = -\frac{1}{\sqrt{3}}x + \frac{2}{\sqrt{3}}, \quad y = \frac{1}{\sqrt{3}}x - \frac{2}{\sqrt{3}}$$
 b $(2, 0)$

14 a
$$y = -e^{-2}x + 3e^{-2}$$
 b $y = -\frac{1}{3}x - \frac{1}{3} + \ln 3$

$$y = 4ex - e$$
 $y = \frac{e^2}{2}x - \frac{3}{2}$ $y = 3ex - 5e$

15 a Domain is
$$\{x \mid x < 0 \text{ or } x > 2\}$$

b
$$f'(x) = \frac{1}{x} + \frac{1}{x-2}$$
 c $y = \frac{4}{3}x - 4 + \ln 3$

16 a i
$$-1$$
 ii -2 iii -3 **b** y-intercept is $-a$

17 x-intercept
$$\frac{2}{3}$$
, y-intercept $-2e$ 18 $\frac{3}{4\sqrt{e}}$ units²

19 **a**
$$y = x$$
 b $y = x$ **c** $y = -\frac{1}{2}x + \frac{\pi}{12} + \frac{\sqrt{3}}{2}$ **d** $y = 1$ **e** $y = 2$

20 Hint: Show that there are no tangents which have gradient
$$= 0$$
.

21
$$\frac{1}{2} \left(\frac{\pi}{2} + 1 \right)^2$$
 units²

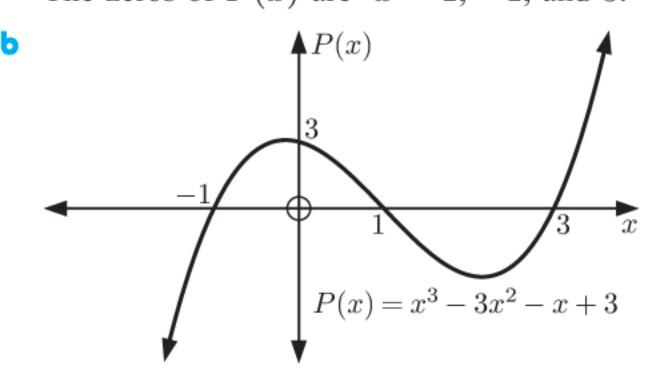
22 a
$$y = \sqrt{2}x - \sqrt{2}\left(\frac{\pi}{4} - 1\right)$$
 b $y = -2x + \frac{2\pi}{3} + \sqrt{3}$

$$y = \frac{1}{2}x + \frac{\pi}{4} - \frac{1}{2}$$
 $y = \left(\frac{1}{\sqrt{3}} + \frac{2\pi}{3}\right)x + \frac{1}{\sqrt{3}}$

23
$$(-4, -64)$$
 24 $(4, -31)$ **25** $(-1, -2)$

26 a
$$P(1) = 1 - 3 - 1 + 3 = 0$$

The zeros of P(x) are x = 1, -1, and 3.



y = -x - 1 d (-1, 0)

e Hint: Let $P(x) = \alpha(x-a)(x-b)(x-c)$

27 a $y = (2a-1)x - a^2 + 9$

b y = 5x, point of contact (3, 15), and y = -7x, point of contact (-3, 21)

28 a $y = (2a+4)x - a^2$

b y = 12x - 16, point of contact (4, 32), and y = -4, point of contact (-2, -4)

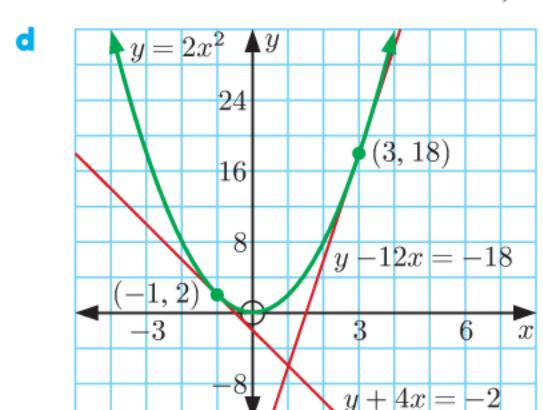
29 y = 5x - 15 and y = -7x - 3

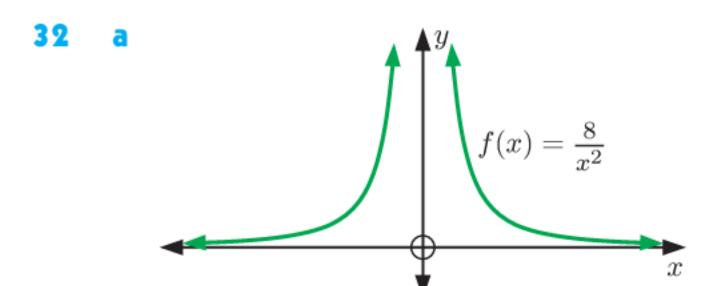
30 a $y = e^a x + e^a (1-a)$ b y = ex

31 a y + 4x = -2 and y - 12x = -18

b (-1, 2) for y + 4x = -2 and (3, 18) for y - 12x = -18

• For a tangent to pass through (1, 4), $4 = 4a - 2a^2$ must have real solutions. But $\Delta < 0$, so no real solutions.





b $16x + a^3y = 24a$ **c** A is $(\frac{3}{2}a, 0)$, B is $(0, \frac{24}{a^2})$

d area = $\frac{18}{|a|}$ units²; as $a \to \infty$, area $\to 0$

33 $a = \frac{1}{4}$, point of intersection $\left(\frac{1}{2}, \frac{\sqrt{3}}{2}\right)$

 $34 \approx 63.43^{\circ}$

a Hint: They must have the same y-coordinate at x = b and the same gradient.

 $a = \frac{1}{2e}$ $d y = e^{-\frac{1}{2}}x - \frac{1}{2}$

 $y = 2asx - as^2, \quad y = 2atx - at^2$

EXERCISE 18B

a x + 8y = 132 **b** x + 7y = 26 **c** x - 3y = -11

d x + 6y = 43 e 64x + 4y = -65 f x = 2

4x + 57y = 1042 h x - 2y = -1

a y = 4 - 2x **b** $y = -\frac{9}{62}x + \frac{1259}{186}$

3 a $\{x \mid x < 2\}$ c 3x - 2y = 1 d 8x + 3y = -19

a y = x + 1 **b** $ex + y = e^2 + 1$ **c** $x + 2ey = 1 + 2e^2$

d $2x + y = \frac{2\pi}{3} + \frac{\sqrt{3}}{2}$ e $y = 1 - \frac{1}{\ln 4}x$ f y = -x

 $2x - 2\sqrt{3}y = \pi + \sqrt{3}$ $x - \sqrt{2}y = \frac{\pi}{4}$

i $(3\ln 3)x + 2y = 6\ln 3 + \frac{2\ln 6}{\ln 3}$

 $x - 2\sqrt{3}y = \frac{\pi}{6} - 4\sqrt{3}$ $x - \sqrt{6}x + y = \sqrt{6}\pi + \sqrt{2}$

5 a = 2, b = 4 6 (-1, -2) and (2, 1)

7 x = 0 8 $y = -\sqrt{14}x + 4\sqrt{14}$

9 a $\frac{dx}{dy} = e^y(y+2)$ b $4e^2x + y = 2 + 12e^4$ 10 b = 3

EXERCISE 18C

1 a i $x \geqslant 0$ ii never b never ii $-2 < x \leqslant 3$

c i $x\leqslant 2$ ii $x\geqslant 2$ d i $x\in\mathbb{R}$ ii never

f i $2 \le x < 4$, x > 4 ii x < 0, $0 < x \le 2$

2 a i $x \leqslant 1, x \geqslant 3$ ii $1 \leqslant x \leqslant 3$

b $f'(x) = 3x^2 - 12x + 9$ = 3(x-3)(x-1) + f'(x)

3 a $f'(x) = 3x^2 - 12x$

b increasing for $x \leq 0$ and $x \geq 4$ decreasing for $0 \le x \le 4$

increasing for $x \ge 0$, decreasing for $x \le 0$

b never increasing, decreasing for all $x \in \mathbb{R}$

c increasing for x > 0, never decreasing

d increasing for $x \ge -\frac{3}{4}$, decreasing for $x \le -\frac{3}{4}$

e never increasing, decreasing for all $x \neq 0$

increasing for $x \ge 1$, decreasing for $0 \le x \le 1$

g never increasing, decreasing for x > 0

h increasing for $x \leq 0$, and $x \geq 4$, decreasing for $0 \le x \le 4$

i increasing for $-\sqrt{\frac{2}{3}} \leqslant x \leqslant \sqrt{\frac{2}{3}}$, decreasing for $x \leqslant -\sqrt{\frac{2}{3}}$, $x \geqslant \sqrt{\frac{2}{3}}$

increasing for $-\frac{1}{2} \leqslant x \leqslant 3$, decreasing for $x \leqslant -\frac{1}{2}$, $x \geqslant 3$

k increasing for $x \ge 0$, decreasing for $x \le 0$

I increasing for $x \le 2 - \sqrt{3}$, $x \ge 2 + \sqrt{3}$, decreasing for $2 - \sqrt{3} \le x \le 2 + \sqrt{3}$

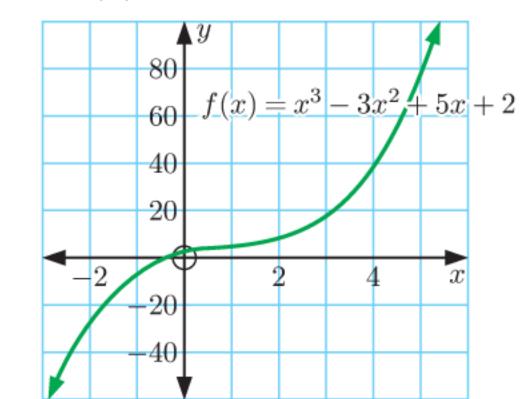
5 a $f'(x) = 3x^2 - 6x + 5$

b $\Delta = 36 - 60 < 0$ and a > 0

f'(x) lies entirely above x-axis.

f'(x) > 0 for all x.

f(x) is increasing for all x.



b increasing for $x \le -3$ and $x \ge 3$, decreasing for $-3 \leqslant x < 0$ and $0 < x \leqslant 3$