Test 1 - revision questions [61 marks]

1. [Maximum mark: 18]

In this question, give all answers to two decimal places.

Bryan decides to purchase a new car with a price of €14 000, but cannot afford the full amount. The car dealership offers two options to finance a loan.

Finance option A:

A 6 year loan at a nominal annual interest rate of 14 % **compounded quarterly**. No deposit required and repayments are made each quarter.

(a.i) Find the repayment made each quarter.

[3]

SPM.2.AHL.TZ0.3

Markscheme	
N = 24 I % = 14 PV = -14000 FV = 0 P/Y = 4 C/Y = 4 (M1)(A1)	
Note: Award <i>M1</i> for an attempt to use a financia award <i>A1</i> for all entries correct. Accept PV = 140	

(€)871.82 **A1**

[3 marks]

(a.ii) Find the total amount paid for the car.

Markscheme	
4×6×871.82	(M1)
(€) 20923.68	A1

(a.iii) Find the interest paid on the loan.

Markscheme 20923.68 – 14000 (M1) (€) 6923.68 A1 [2 marks]

Finance option B:

A 6 year loan at a nominal annual interest rate of r % **compounded monthly**. Terms of the loan require a 10 % deposit and monthly repayments of \in 250.

(b.i) Find the amount to be borrowed for this option.

Markscheme 0.9 × 14000 (= 14000 – 0.10 × 14000) M1 (€) 12600.00 A1 [2 marks]

(b.ii) Find the annual interest rate, r.

Markscheme N = 72 PV = 12600 PMT = -250

[2]

[3]

FV = 0 P/Y = 12 C/Y = 12 *(M1)(A1)* **Note:** Award *M1* for

Note: Award *M1* for an attempt to use a financial app in their technology, award *A1* for all entries correct. Accept PV = -12600 provided PMT = 250.

12.56(%) **A1**

[3 marks]

(c) State which option Bryan should choose. Justify your answer.

[2]

Markscheme

EITHER

Bryan should choose Option A A1

no deposit is required **R1**

Note: Award **R1** for stating that no deposit is required. Award **A1** for the correct choice from that fact. Do not award **R0A1**.

0R

Bryan should choose Option B A1

```
cost of Option A (6923.69) > cost of Option B (72 × 250 – 12600 = 5400)
R1
```

Note: Award *R1* for a correct comparison of costs. Award *A1* for the correct choice from that comparison. Do not award *R0A1*.

[2 marks]

(d) Bryan chooses option B. The car dealership invests the money Bryan pays as soon as they receive it.

> If they invest it in an account paying 0.4 % interest per month and inflation is 0.1 % per month, calculate the real amount of money the car dealership has received by the end of the 6 year period.

[4]

```
Markscheme
real interest rate is 0.4 - 0.1 = 0.3\%
                                        (M1)
value of other payments 250 + 250 \times 1.003 + ... + 250 \times 1.003^{71}
use of sum of geometric sequence formula or financial app on a GDC
(M1)
= 20 058.43
value of deposit at the end of 6 years
1400 \times (1.003)^{72} = 1736.98
                               (A1)
Total value is (€) 21 795.41
                              A1
Note: Both M marks can awarded for a correct use of the GDC's financial
app:
N = 72 (6 \times 12)
1\% = 3.6(0.3 \times 12)
PV = 0
PMT = -250
FV =
P/Y = 12
C/Y = 12
OR
```

N = 72 (6 × 12) I % = 0.3 PV = 0 PMT = -250 FV = P/Y = 1 C/Y = 1[4 marks] **2.** [Maximum mark: 15]

Sophie is planning to buy a house. She needs to take out a mortgage for \$120000. She is considering two possible options.

Option 1: Repay the mortgage over 20 years, at an annual interest rate of 5%, compounded annually.

Option 2: Pay \$1000 every month, at an annual interest rate of 6%, compounded annually, until the loan is fully repaid.

(a.i) Calculate the monthly repayment using option 1.

[2]

EXM.2.SL.TZ0.2

Markscheme
evidence of using Finance solver on GDC M1
Monthly payment = \$785 (\$784.60) A1
[2 marks]

(a.ii) Calculate the total amount Sophie would pay, using option 1.

[2]

Markscheme	
240 imes785=\$188000 M1A1	
[2 marks]	

(b.i) Calculate the number of months it will take to repay the mortgage using option 2.

[3]

Markscheme

N=180.7~ M1A1

It will take 181 months **A1**

(b.ii) Calculate the total amount Sophie would pay, using option 2.

[2]

Markscheme

 $181\times1000=\$\,181000\,$ M1A1 $\,$

[2 marks]

Give a reason why Sophie might choose

(c.i) option 1.

[1]

Markscheme	
------------	--

The monthly repayment is lower, she might not be able to afford \$1000 per month. *R1*

[1 mark]

(c.ii) option 2.

[1]

Markscheme

the total amount to repay is lower. **R1**

[1 mark]

Sophie decides to choose option 1. At the end of 10 years, the interest rate is changed to 7%, compounded annually.

(d.i) Use your answer to part (a)(i) to calculate the amount remaining on her mortgage after the first 10 years.

Markscheme

\$74400 (accept \$74300) *M1A1*

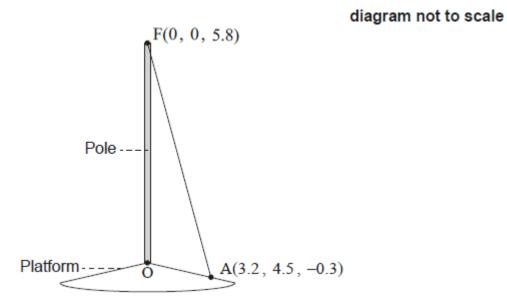
[2 marks]

(d.ii) Hence calculate her monthly repayment for the final 10 years.

[2]

Markscheme

Use of finance solver with N = 120, PV = \$74400, I = 7% **A1**


\$855 (accept \$854 - \$856) **A1**

[2 marks]

3. [Maximum mark: 8]

22M.1.AHL.TZ1.6

A vertical pole stands on a sloped platform. The bottom of the pole is used as the origin, O, of a coordinate system in which the top, F, of the pole has coordinates (0, 0, 5.8). All units are in metres.

The pole is held in place by ropes attached at $\ensuremath{\mathrm{F}}.$

One of these ropes is attached to the platform at point A(3.2, 4.5, -0.3). The rope forms a straight line from A to F.

(a) Find
$$\overrightarrow{AF}$$
. [1]

Markscheme $\begin{pmatrix} -3.2 \\ -4.5 \\ 6.1 \end{pmatrix}$ A1
[1 mark]

(b) Find the length of the rope.

Markscheme

$$\sqrt{\left(-3.\,2
ight)^{2}+\left(-4.\,5
ight)^{2}+6.\,1^{2}}$$
 (M1)

 $8.\,22800\ldots\approx 8.\,23~m \qquad \text{A1}$

[2 marks]

(c) Find \widehat{FAO} , the angle the rope makes with the platform.

[5]

Markscheme **EITHER** $\overrightarrow{AO} = \begin{pmatrix} -3.2 \\ -4.5 \\ 0.3 \end{pmatrix}$ A1 $\cos \theta = \frac{\overrightarrow{AO} \cdot \overrightarrow{AF}}{|\overrightarrow{AO}| |\overrightarrow{AF}|}$ $\overrightarrow{AO} \cdot \overrightarrow{AF} = (-3.2)^2 + (-4.5)^2 + (0.3 \times 6.1) \ (= 32.32)$ (A1) $\cos \theta = \frac{32.32}{\sqrt{3.2^2 + 4.5^2 + 0.3^2} \times 8.22800...}$ (M1) = 0.710326... (A1)

Note: If \overrightarrow{OA} is used in place of \overrightarrow{AO} then $\cos \theta$ will be negative. Award A1(A1)(M1)(A1) as above. In order to award the final A1, some justification for changing the resulting obtuse angle to its supplementary angle **must** be seen.

OR

$$AO = \sqrt{3.2^2 + 4.5^2 + 0.3^2} \ (= 5.52991...)$$
 (A1)
 $\cos \theta = \frac{8.22800...^2 + 5.52991...^2 - 5.8^2}{2 \times 8.22800... \times 5.52991...}$ (M1)(A1)
 $= 0.710326...$ (A1)

THEN

 $heta=0.\,780833\ldotspprox 0.\,781\,$ OR $44.\,7384\ldots\degreepprox 44.\,7\degree$ A1

[5 marks]

4. [Maximum mark: 4]

Katya approximates π , correct to four decimal places, by using the following expression.

$$3 + rac{1}{6 + rac{13}{16}}$$

(a) Calculate Katya's approximation of π , correct to four decimal places.

[2]

Markscheme
$$\pi \approx 3 + \frac{1}{6 + \frac{13}{16}}$$
 $= 3.14678...\left(\frac{343}{109}, 3\frac{16}{109}\right)$ (A1) $= 3.1468$ A1Note: Award A1 for correct rounding to 4 decimal places. Follow through within this part.[2 marks]

(b) Calculate the percentage error in using Katya's four decimal place approximation of π , compared to the exact value of π in your calculator.

Markscheme
$$\left|\frac{3.1468-\pi}{\pi}\right| \times 100$$
 (M1)

Note: Award *M1* for substitution of their final answer in part (a) into the percentage error formula. Candidates should use the exact value of π from their GDC.

 $= 0.166 \, (\%) \, (0.165754 \ldots)$ A1

[2 marks]

5. [Maximum mark: 6]

Tommaso and Pietro have each been given 1500 euro to save for college.

Pietro invests his money in an account that pays a nominal annual interest rate of 2.75%, **compounded half-yearly**.

(a) Calculate the amount Pietro will have in his account after 5 years. Give your answer correct to 2 decimal places.

[3]

Markscheme				
METHOD 1				
N = 5	OR	N = 10		
I%=2.75		I%=2.75		
PV = -1500)	PV = -15	00	
PMT = 0		PMT = 0		
P/Y = 1		P/Y=2		
C/Y=2		C/Y=2	(M1)(A1)	
METHOD 2				
$1500\left(1+rac{2.7}{2 imes} ight)$	$\left(\frac{75}{100}\right)^{2\times5}$	(M1)(A1)		
1719. 49 euro	A	1		
[3 marks]				

(b) Tommaso wants to invest his money in an account such that his investment will increase to 1.5 times the initial amount in 5

years. Assume the account pays a nominal annual interest of r% compounded quarterly.

Determine the value of *r*.

METHOD 1

Markscheme

N = 5ORN = 20 $PV = \pm 1500$ $PV = \pm 1500$ $FV = \mp 2250$ $FV = \mp 2250$ PMT = 0PMT = 0P/Y = 1P/Y = 4C/Y = 4C/Y = 4

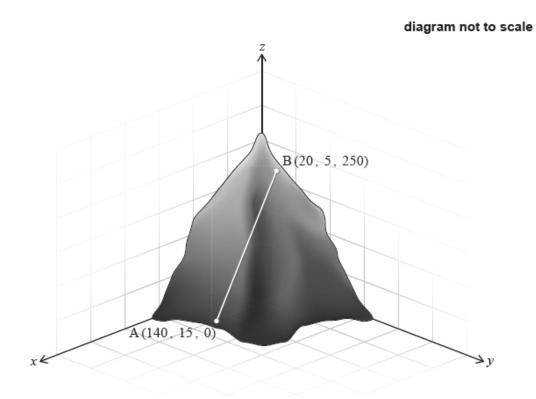
Note: Award *M1* for an attempt to use a financial app in their technology, *A1* for all entries correct. *PV* and *FV* must have opposite signs.

METHOD 2

$$1500\left(1+rac{r}{4 imes 100}
ight)^{4 imes 5} = 2250 \,\, {
m OR} \,\, \left(1+rac{r}{4 imes 100}
ight)^{4 imes 5} = 1.5$$
 (M1) (A1)

Note: Award *M1* for substitution in compound interest formula, *A1* for correct substitution and for equating to 2250 (if using LHS equation) or to 1.5 (if using RHS equation).

 $r = 8.19 \ (8.19206...)$ A1


Note: Accept r = 8.19%.

Accept a trial and error method which leads to r=8.19.

[3 marks]

6. [Maximum mark: 5]

An inclined railway travels along a straight track on a steep hill, as shown in the diagram.

The locations of the stations on the railway can be described by coordinates in reference to x, y, and z-axes, where the x and y axes are in the horizontal plane and the z-axis is vertical.

The ground level station A has coordinates (140, 15, 0) and station B, located near the top of the hill, has coordinates (20, 5, 250). All coordinates are given in metres.

(a) Find the distance between stations A and B.

Markscheme	
attempt at substitution into 3D distance formula (M1)	
$\mathrm{AB} = \sqrt{\left(140 - 20 ight)^2 + \left(15 - 5 ight)^2 + 250^2} \ \left(=\sqrt{77\ 000} ight)$	

$$= 277 \text{ m} \left(10\sqrt{770}, 277.488...\right)$$
 A1
[2 marks]

Station \boldsymbol{M} is to be built halfway between stations \boldsymbol{A} and $\boldsymbol{B}.$

(b) Find the coordinates of station $M_{\!\cdot}$

[2]

Markscheme
attempt at substitution in the midpoint formula (M1)
$\left(rac{140+20}{2}, \ rac{15+5}{2}, \ rac{0+250}{2} ight)$
(80, 10, 125) A1
[2 marks]

(c) Write down the height of station $M, {\mbox{in metres}}, {\mbox{above the ground}}.$

[1]

Markscheme	
$125 \mathrm{~m}$	A1
[1 mark]	

7. [Maximum mark: 5]

Roger buys a new laptop for himself at a cost of $\pounds 495$. At the same time, he buys his daughter Chloe a higher specification laptop at a cost of $\pounds 2200$.

It is anticipated that Roger's laptop will depreciate at a rate of 10% per year, whereas Chloe's laptop will depreciate at a rate of 15% per year.

(a) Estimate the value of Roger's laptop after 5 years.

[2]

Markscheme	
${ m f495 imes 0.9^5 = f292}~{ m (f292.292)}$	(M1)A1
[2 marks]	

Roger and Chloe's laptops will have the same value k years after they were purchased.

(b) Find the value of k.

Markscheme

 ${
m f}495 imes 0.9^k = 2200 imes 0.85^k$ (M1)

 $k = 26.1 \ (26.0968...)$ A1

Note: Award *M1A0* for k - 1 in place of k.

[2 marks]

(c) Comment on the validity of your answer to part (b).

[1]

Markscheme

depreciation rates unlikely to be constant (especially over a long time period) **R1**

Note: Accept reasonable answers based on the magnitude of k or the fact that "value" depends on factors other than time.

[1 mark]

© International Baccalaureate Organization, 2023