Complex numbers - exam questions [49 marks]

1. [Maximum mark: 7] Let $w = a \mathrm{e}^{rac{\pi}{4}\mathrm{i}}$, where $a \in \mathbb{R}^+$.

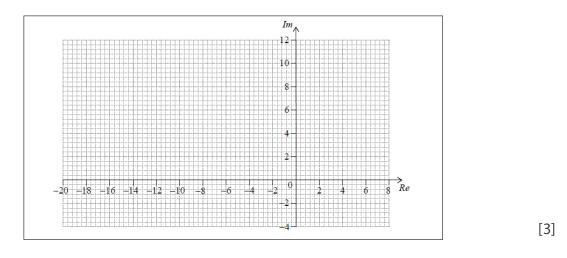
for a = 2,

(a.i) find the values of w^2, w^3 , and w^4 .

[2]

SPM.1.AHL.TZ0.15

(a.ii) draw w, w^2, w^3 , and w^4 on the following Argand diagram.



(b) Let
$$z=rac{w}{2-\mathrm{i}}.$$

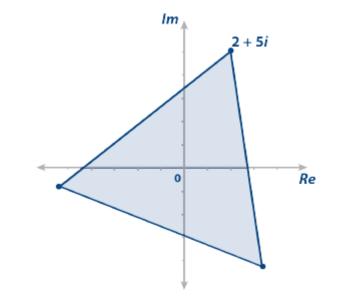
Find the value of a for which successive powers of z lie on a circle.

[2]

2. [Maximum mark: 5]

(b)

(a) Write down $2+5\mathrm{i}$ in exponential form.



An equilateral triangle is to be drawn on the Argand plane with one of the vertices at the point corresponding to 2+5i and all the vertices equidistant from 0.

Find the points that correspond to the other two vertices. Give your answers in Cartesian form.

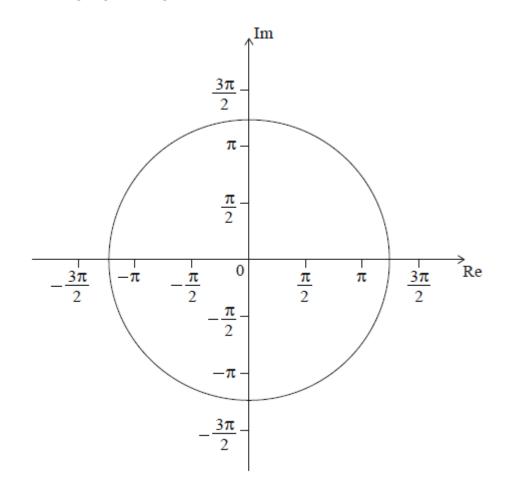
[3]

EXN.1.AHL.TZ0.14

[2]

3. [Maximum mark: 7]

The following Argand diagram shows a circle centre 0 with a radius of 4 units.



A set of points, $\{z_{ heta}\}$, on the Argand plane are defined by the equation $z_{ heta}=rac{1}{2} heta {
m e}^{ heta {
m i}}$, where $heta\geq 0$.

Plot on the Argand diagram the points corresponding to

 $(a.i) \quad \theta = \frac{\pi}{2}.$

(a.ii)
$$\theta = \pi$$
. [1]

(a.iii)
$$\theta = \frac{3\pi}{2}$$
. [1]

Consider the case where $|z_{ heta}|=4.$

	(b.i)	Find this value of $ heta.$	[2]
	(b.ii)	For this value of $ heta$, plot the approximate position of $z_ heta$ on the Argand diagram.	[2]
4.		mum mark: 8] der $w=\mathrm{i}z+1$, where $w,\ z\in\mathbb{C}.$	21M.1.AHL.TZ1.9
	Find a	w when	
	(a.i)	z=2i.	[2]
	(a.ii)	z = 1 + i.	[1]
	Point $m{z}$ on the Argand diagram can be transformed to point $m{w}$ by two transformations.		
	(b)	Describe these two transformations and give the order in which they are applied.	[3]
	(c)	Hence, or otherwise, find the value of z when $w=2-{ m i}$.	[2]

5. [Maximum mark: 8]

21M.1.AHL.TZ2.12

It is given that $z_1=3 ext{cis}igg(rac{3\pi}{4}igg)$ and $z_2=2 ext{cis}igg(rac{n\pi}{16}igg), \ n\in\mathbb{Z}^+.$

In parts (a)(i) and (a)(ii), give your answers in the form $r{
m e}^{{
m i} heta}, \; r\geq 0, \; -\pi< heta\leq \pi.$

(a.i) Find the value of z_1^{3} . [2]

(a.ii) Find the value of
$$\left(rac{z_1}{z_2}
ight)^4$$
 for $n=2.$ [3]

(b) Find the least value of
$$n$$
 such that $z_1 z_2 \in \mathbb{R}^+$. [3]

6. [Maximum mark: 14] 18M.1.AHL.TZ1.H_11
Consider
$$w = 2\left(\cos{\frac{\pi}{3}} + i\sin{\frac{\pi}{3}}\right)$$

(a.i) Express
$$w^2$$
 and w^3 in modulus-argument form. [3]

(a.ii) Sketch on an Argand diagram the points represented by w^0 , w^1 , w^2 and w^3 . [2]

These four points form the vertices of a quadrilateral, Q.

(b) Show that the area of the quadrilateral
$$Q$$
 is $\frac{21\sqrt{3}}{2}$. [3]

(c) Let $z = 2\left(\cos\frac{\pi}{n} + i\sin\frac{\pi}{n}\right), \ n \in \mathbb{Z}^+$. The points represented on an Argand diagram by $z^0, \ z^1, \ z^2, \ldots, \ z^n$ form the vertices of a polygon P_n .

Show that the area of the polygon P_n can be expressed in the form $a\,(b^n-1){\sinrac{\pi}{n}}$, where $a,\ b\,\in\mathbb{R}.$ [6]

© International Baccalaureate Organization, 2023