Exponential function - modelling [37 marks]

1.	Profe	[Maximum mark: 6] Professor Vinculum investigated the migration season of the Bulbul bir their natural wetlands to a warmer climate.		Z0.5
	He found that during the migration season their population, P could be modelled by $P=1350+400(1.25)^{-t},t\ge$ 0, where t is the number days since the start of the migration season.			
	(a.i)	Find the population of the Bulbul birds at the start of the migration season.		[1]
	(a.ii)	Find the population of the Bulbul birds after 5 days.		[2]
	(b)	Calculate the time taken for the population to decrease below 1400.		[2]
	(c)	According to this model, find the smallest possible population of Bulbul birds during the migration season.		[1]

2. [Maximum mark: 15] 23M.2.SL.TZ2.3 A scientist is conducting an experiment on the growth of a certain species of bacteria.

The population of the bacteria, P, can be modelled by the function

$$Pig(tig)=1200 imes k^t$$
 , $t\ge 0$,

where t is the number of hours since the experiment began, and k is a positive constant.

(a.i)	Write down the value of $P(0).$				
(a.ii)	Interpret what this value means in this context.	[1]			
3 hours after the experiment began, the population of the bacteria is 18750 .					
(b)	Find the value of k .	[2]			
(c)	Find the population of the bacteria 1 hour and 30 minutes after the experiment began.	[2]			
The scientist conducts a second experiment with a different species of bacteria.					
The population of this bacteria, S , can be modelled by the function					
$Sig(tig)=5000 imes 1$. 65^t , $t\ge 0$,					
where t is the number of hours since both experiments began.					
(d)	Find the value of t when the two populations of bacteria are equal.				
It takes 2 hours and m minutes for the number of bacteria in the second experiment to reach 19000 .					
(e)	Find the value of m , giving your answer as an integer value.	[4]			

The bacteria in the second experiment are growing inside a container. The scientist models the volume of each bacterium in the second experiment to be $1 \times 10^{-18} \,\mathrm{m}^3$, and the available volume inside the container is $2.1 \times 10^{-5} \,\mathrm{m}^3$.

- (f) Determine how long it would take for the bacteria to fill the container. [3]
- 3. [Maximum mark: 6] 22N.1.SL.TZ0.5 Celeste heated a cup of coffee and then let it cool to room temperature. Celeste found the coffee's temperature, T, measured in $^{\circ}$ C, could be modelled by the following function,

$$T(t)=71\mathrm{e}^{-0.0514t}+23,\;t\geq0$$
,

where t is the time, in minutes, after the coffee started to cool.

(a) Find the coffee's temperature 16 minutes after it started to cool. [2]

The graph of T has a horizontal asymptote.

(b)	Write down the equation of the horizontal asymptote.	[1]
(c)	Write down the room temperature.	[1]

(d) Given that
$$T^{-1}ig(50ig)=k$$
, find the value of k . [2]

4. [Maximum mark: 4]

Natasha carries out an experiment on the growth of mould. She believes that the growth can be modelled by an exponential function

$$P(t) = Ae^{kt}$$
,

where P is the area covered by mould in mm^2 , t is the time in days since the start of the experiment and A and k are constants.

The area covered by mould is $112\,mm^2$ at the start of the experiment and $360\,mm^2$ after 5 days.

- (a) Write down the value of A. [1]
- (b) Find the value of k. [3]

5.	Profes	num mark: 6] sor Wei observed that students have difficulty remembering the nation presented in his lectures.	21M.1.SL.TZ1.7
		delled the percentage of information retained, R , by the function $= 100 { m e}^{-pt}$, $t \geq 0$, where t is the number of days after the lectu	ire.
		nd that 1 day after a lecture, students had forgotten 50% of the nation presented.	
	(a)	Find the value of <i>p</i> .	[2]
	(b)	Use this model to find the percentage of information retained by his students 36 hours after Professor Wei's lecture.	[2]
		Based on his model, Professor Wei believes that his students will always retain some information from his lecture.	
	(c)	State a mathematical reason why Professor Wei might believe this.	[1]
	(d)	Write down one possible limitation of the domain of the model.	[1]

© International Baccalaureate Organization, 2023