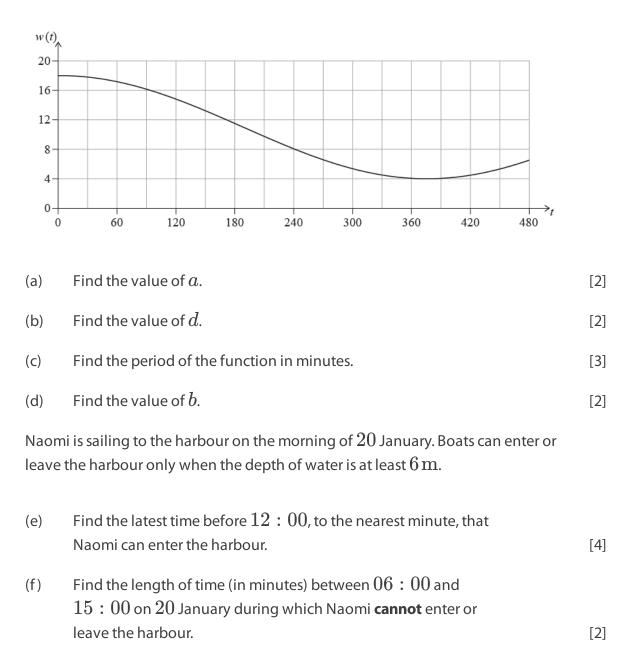

Trig modelling - exam questions [60 marks]

1. [Maximum mark: 7] EXN.1.SL.TZ0.6 The size of the population (P) of migrating birds in a particular town can be approximately modelled by the equation $P = a \sin(bt) + c, \ a, b, c \in \mathbb{R}^+$, where t is measured in months from the time of the initial measurements.

In a 12 month period the maximum population is 2600 and occurs when t=3 and the minimum population is 800 and occurs when t=9.

This information is shown on the graph below.



(a.i)	Find the value of <i>a</i> .	[2]
(a.ii)	Find the value of <i>b</i> .	[2]
(a.iii)	Find the value of <i>c</i> .	[1]
(b)	Find the value of t at which the population first reaches $2200.$	[2]

2. [Maximum mark: 15]

The depth of water, w metres, in a particular harbour can be modelled by the function $w(t) = a \cos{(bt^{\circ})} + d$ where t is the length of time, in minutes, after 06:00.

On 20 January, the first high tide occurs at 06:00, at which time the depth of water is $18 \, m$. The following low tide occurs at 12:15 when the depth of water is $4 \, m$. This is shown in the diagram.

3. [Maximum mark: 6]

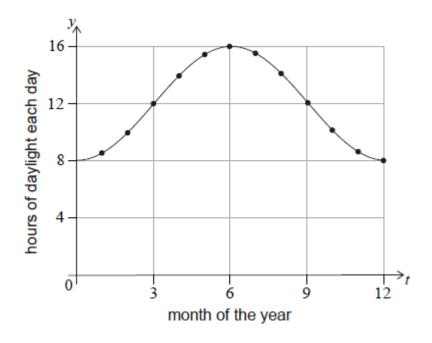
[1]

A cat runs inside a circular exercise wheel, making the wheel spin at a constant rate in an anticlockwise direction. The height, $h \, \mathrm{cm}$, of a fixed point, P , on the wheel can be modelled by $h(t) = a \, \sin(bt) + c$ where t is the time in seconds and $a, \ b, \ c \in \mathbb{R}^+$.

When t=0, point P is at a height of $78\,\mathrm{cm}$.

Write down the new value of *b*.

(d)


(a)	Write down the value of <i>c</i> .	[1]
When	$t=4$, point ${ m P}$ first reaches its maximum height of $143{ m cm}$.	
(b.i)	Find the value of <i>a</i> .	[1]
(b.ii)	Find the value of <i>b</i> .	[2]
(c)	Write down the minimum height of point ${f P}.$	[1]
Later, the cat is tired, and it takes twice as long for point ${f P}$ to complete one revolution at a new constant rate.		

[1]

4. [Maximum mark: 15]

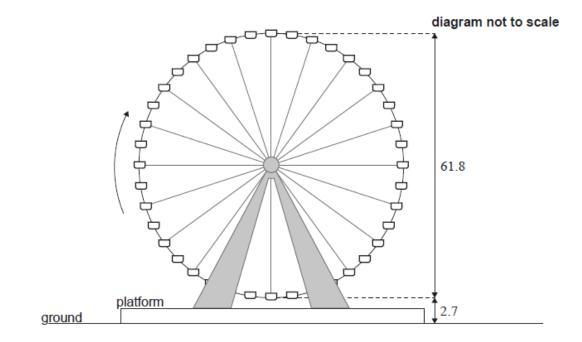
Boris recorded the number of daylight hours on the first day of each month in a northern hemisphere town.

This data was plotted onto a scatter diagram. The points were then joined by a smooth curve, with minimum point $(0,\ 8)$ and maximum point $(6,\ 16)$ as shown in the following diagram.

Let the curve in the diagram be y=f(t), where t is the time, measured in months, since Boris first recorded these values.

Boris thinks that f(t) might be modelled by a quadratic function.

 Write down one reason why a quadratic function would not be a good model for the number of hours of daylight per day, across a number of years.


Paula thinks that a better model is $f(t) = a\,\cos(bt) + d$, $t \geq 0$, for specific values of $a,\ b$ and d.

For Paula's model, use the diagram to write down

(b.i)	the amplitude.	[1]
(b.ii)	the period.	[1]
(b.iii)	the equation of the principal axis.	[2]
(c)	Hence or otherwise find the equation of this model in the form:	
	$f(t) = a\cos(bt) + d$	[3]
(d)	For the first year of the model, find the length of time when there are more than 10 hours and 30 minutes of daylight per day.	[4]
The true maximum number of daylight hours was 16 hours and 14 minutes.		
(e)	Calculate the percentage error in the maximum number of daylight hours Boris recorded in the diagram.	[3]

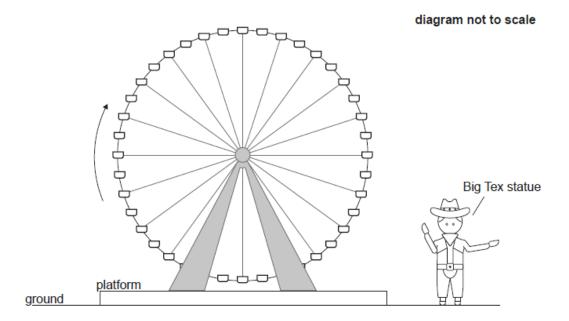
5. [Maximum mark: 17]

The Texas Star is a Ferris wheel at the state fair in Dallas. The Ferris wheel has a diameter of $61.8 \,\mathrm{m}$. To begin the ride, a passenger gets into a chair at the lowest point on the wheel, which is $2.7 \,\mathrm{m}$ above the ground, as shown in the following diagram. A ride consists of multiple revolutions, and the Ferris wheel makes 1.5 revolutions per minute.

The height of a chair above the ground, h, measured in metres, during a ride on the Ferris wheel can be modelled by the function $h(t) = -a \cos(bt) + d$, where t is the time, in seconds, since a passenger began their ride.

Calculate the value of

- (a.i) *a*. [2]
- (a.ii) *b*. [2]
- (a.iii) *d*. [2]


A ride on the Ferris wheel lasts for 12 minutes in total.

(b) Calculate the number of revolutions of the Ferris wheel per ride. [2]

For exactly one ride on the Ferris wheel, suggest

- (c.i) an appropriate domain for h(t). [1]
- (c.ii) an appropriate range for h(t). [2]

Big Tex is a 16.7 metre-tall cowboy statue that stands on the horizontal ground next to the Ferris wheel.

[Source: Aline Escobar., n.d. Cowboy. [image online] Available at: https://thenounproject.com/search/? q=cowboy&i=1080130

This file is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported (CC BY-SA 3.0) https://creativecommons.org/licenses/by-sa/3.0/deed.en [Accessed 13/05/2021]. Source adapted.]

(d) By considering the graph of h(t), determine the length of time during one revolution of the Ferris wheel for which the chair is higher than the cowboy statue.

There is a plan to relocate the Texas Star Ferris wheel onto a taller platform which will increase the maximum height of the Ferris wheel to $65.2 \,\mathrm{m}$. This will change the value of one parameter, a, b or d, found in part (a).

[3]

(e.i)	Identify which parameter will change.	[1]
(e.ii)	Find the new value of the parameter identified in part (e)(i).	[2]

© International Baccalaureate Organization, 2023