DRV - practice [75 marks]

1.	[Maxir Mr Bui and 9	num mark: 6] rke teaches a mathematics class with 15 students. In this class there are 6 female male students.	SPM.1.SL.TZ0.13 students			
	Each day Mr Burke randomly chooses one student to answer a homework question.					
	(a)	Find the probability that on any given day Mr Burke chooses a female student to answer a question.	[1]			
	In the	first month, Mr Burke will teach his class 20 times.				
	(b)	Find the probability he will choose a female student 8 times.	[2]			
	(c)	Find the probability he will choose a male student at most 9 times.	[3]			

2. [Maximum mark: 6]

Jae Hee plays a game involving a biased six-sided die.

The faces of the die are labelled -3, -1, 0, 1, 2 and 5.

The score for the game, X, is the number which lands face up after the die is rolled.

The following table shows the probability distribution for X.

Score x	-3	-1	0	1	2	5
P(X=x)	$\frac{1}{18}$	р	$\frac{3}{18}$	$\frac{1}{18}$	$\frac{2}{18}$	$\frac{7}{18}$

(a) Find the exact value of p.

Jae Hee plays the game once.

(b)	Calculate the expected score.	[2]
(c)	Jae Hee plays the game twice and adds the two scores together.	
	Find the probability Jae Hee has a total score of -3 .	[3]

[Maximum mark: 6] SPM.1.AHL.TZ0.17 Mr Burke teaches a mathematics class with 15 students. In this class there are 6 female students and 9 male students.

Each day Mr Burke randomly chooses one student to answer a homework question.

In the first month, Mr Burke will teach his class 20 times.

- (a) Find the probability he will choose a female student 8 times. [2]
- (b) The Head of Year, Mrs Smith, decides to select a student at random from the year group to read the notices in assembly. There are 80 students in total in the year group. Mrs Smith calculates the probability of picking a male student 8 times in the first 20 assemblies is 0.153357 correct to 6 decimal places.

Find the number of male students in the year group.

[1]

[4]

4. [Maximum mark: 5]

In a game, balls are thrown to hit a target. The random variable X is the number of times the target is hit in five attempts. The probability distribution for X is shown in the following table.

x	0	1	2	3	4	5
$\mathbf{P}(\boldsymbol{X} = \boldsymbol{x})$	0.15	0.2	k	0.16	2k	0.25

(a) Find the value of k.

The player has a chance to win money based on how many times they hit the target.

The gain for the player, in \$, is shown in the following table, where a negative gain means that the player loses money.

x	0	1	2	3	4	5
Player's gain (\$)	-4	-3	-1	0	1	4

(b) Determine whether this game is fair. Justify your answer.

[3]

[2]

5. [Maximum mark: 7]

Taizo plays a game where he throws one ball at two bottles that are sitting on a table. The probability of knocking over bottles, in any given game, is shown in the following table.

Number of bottles knocked over	0	1	2
Probability	0.5	0.4	0.1

(a) Taizo plays two games that are independent of each other. Find the probability that Taizo knocks over a **total** of two bottles. [4]

In any given game, Taizo will win k points if he knocks over two bottles, win 4 points if he knocks over one bottle and lose 8 points if no bottles are knocked over.

(b) Find the value of k such that the game is fair.

[3]

6. [Maximum mark: 16]

At Mirabooka Primary School, a survey found that 68% of students have a dog and 36% of students have a cat. 14% of students have both a dog and a cat.

This information can be represented in the following Venn diagram, where m, n, p and q represent the percentage of students within each region.

Find the value of

(a.i)	m.	[1]
(a.ii)	n.	[1]
(a.iii)	р.	[1]
(a.iv)	q.	[1]
(b)	Find the percentage of students who have a dog or a cat or both.	[1]
Find t	he probability that a randomly chosen student	
(c.i)	has a dog but does not have a cat.	[1]
(c.ii)	has a dog given that they do not have a cat.	[2]
Each y Schoc	vear, one student is chosen randomly to be the school captain of Mirabooka Primary ol.	
Timic	using a binomial distribution to make predictions about how many of the payt 10	

Tim is using a binomial distribution to make predictions about how many of the next 10 school captains will own a dog. He assumes that the percentages found in the survey will remain constant for future years and that the events "being a school captain" and "having a dog" are independent.

Use Tim's model to find the probability that in the next 10 years

(d.i)	5 school captains have a dog.	[2]
(d.ii)	more than 3 school captains have a dog.	[2]
(d.iii)	exactly 9 school captains in succession have a dog.	[3]
John r	andomly chooses 10 students from the survey.	
(e)	State why John should not use the binomial distribution to find the probability that 5 of these students have a dog.	[1]

7. [Maximum mark: 7] 22M.1.SL.TZ2.5 A polygraph test is used to determine whether people are telling the truth or not, but it is not completely accurate. When a person tells the truth, they have a 20% chance of failing the test. Each test outcome is independent of any previous test outcome.

 $10\, {\rm people}$ take a polygraph test and all $10\, {\rm tell}$ the truth.

(a)	Calculate the expected number of people who will pass this polygraph test.	[2]
(b)	Calculate the probability that exactly 4 people will fail this polygraph test.	[2]
(c)	Determine the probability that fewer than 7 people will pass this polygraph	
	test.	[3]

8. [Maximum mark: 6]

x	0	1	2	3
P(X=x)	q	$4p^2$	р	$0.7 - 4p^2$

(a)	Find an expression for q in terms of p .	[2]
(b.i)	Find the value of p which gives the largest value of $\mathrm{E}(X).$	[3]
(b.ii)	Hence, find the largest value of $\mathrm{E}(X)$.	[1]

9. [Maximum mark: 16] 19M.2.SL.TZ1.S_10 There are three fair six-sided dice. Each die has two green faces, two yellow faces and two red faces.

All three dice are rolled.

(a.i)	Find the probability of rolling exactly one red face.	[2]
(a.ii)	Find the probability of rolling two or more red faces.	[3]

Ted plays a game using these dice. The rules are:

- Having a turn means to roll all three dice.
- He wins \$10 for each green face rolled and adds this to his winnings.
- After a turn Ted can either:
 - end the game (and keep his winnings), or
 - have another turn (and try to increase his winnings).
- If two or more red faces are rolled in a turn, all winnings are lost and the game ends.
- (b) Show that, after a turn, the probability that Ted adds exactly \$10 to his winnings is $\frac{1}{3}$.

[5]

[1]

[2]

The random variable D (\$) represents how much is added to his winnings after a turn.

The following table shows the distribution for D, where w represents his winnings in the game so far.

D (\$)	-w	0	10	20	30
$\mathbb{P}(D=d)$	x	у	$\frac{1}{3}$	$\frac{2}{9}$	$\frac{1}{27}$

(c.i)	Write down the value of $x.$	
-------	------------------------------	--

(c.ii) Hence, find the value of y.

(d) Ted will always have another turn if he expects an increase to his winnings.

Find the least value of w for which Ted should end the game instead of having another turn. [3]

© International Baccalaureate Organization, 2023