Name:

Mathematics preIB Examination

January 9, 2023

 $1~{\rm hour}~30~{\rm minutes}$

Instructions to candidates

- Do not open this examination paper until instructed to do so.
- Calculators are **not allowed** for this examination paper.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- The maximum mark for this examination paper is [74 marks].
- Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to **show all working**.
- Write your solutions in the space provided.

1. [Maximum mark: 11]

Consider the function $f(x) = 3 - 2\sin\left(\frac{\pi}{6}x\right)$, where $0 \le x \le 24$. a) Find the period of the function. [2] b) Find the exact value of f(2). [2]

- c) Find the range of values of the function.
- d) Sketch the graph of y = f(x).

[1]

[2]

[4]

e) Solve the inequality f(x) > 2.

2. [Maximum mark: 15]

a) Part of the graph of $f(x) = \tan(Bx) + D$ is shown below. The graph crosses the *y*-axis at (0, -1) and has vertical asymptotes at x = 3 + 6k, where $k \in \mathbb{Z}$ [4]

(i) Find the constants B and D.

(ii) Write down the transformations that map the graph of $y = \tan(x)$ onto the graph of y = f(x).

b) Part of the graph of $f(x) = A\sin(B(x-C)) + D$ is shown below. The graph has a minimum at (3.5, -1) and a maximum at (8.5, 3). [4]

Find the constants A, B, C and D, given that 0 < C < 5.

c) The diagram below shows the graph of a quadratic function. The graph has a minimum at (2,1) and passes through (6,5). [4]

(i) Find the equation of the function in the form $f(x) = ax^2 + bx + c$.

(ii) Write down a sequence of transformations that maps the graph of $y = x^2$ onto the graph of y = f(x).

d) The diagram below shows the graph of a quadratic function. The line $x = -\frac{3}{2}$ is the axis of symmetry of the graph. The graph has a *y*-intercept at y = 2 and one of its *x*-intercepts at x = 1. [3]

Find the equation of the function in the form $y = ax^2 + bx + c$.

3. [Maximum mark: 12]

Consider the equation:

$$x^2 + (m-1)x + m + 7 = 0$$

Let the solutions to the above equations be α and β .

a) First consider the case where m = -4.

i) Find the value of $\alpha^2 + \beta^2$.

[3]

ii) Find a quadratic equation in the form $x^2 + Bx + C = 0$, whose solutions are α^2 and β^2 , where B and C are integers to be found. [2]

- b) Now let $m \in \mathbb{R}$.
 - i) Find $(\alpha 1)(\beta 1)$ in terms of m. [2]

ii) Hence, or otherwise, find the set of values of m, for which the equations has two distinct real solutions which are both greater than 1. [5]

4. [Maximum mark: 13]

Solve the following equations:

a)
$$\left(\frac{1}{x+1}\right)^2 + \frac{1}{x+1} - 6 = 0,$$
 [4]

b)
$$\cos^2(3\theta) + 2\cos(3\theta) = 3$$
, where $0 \le \theta \le 2\pi$, [4]

c)
$$3\sin\theta + 3 = 2\cos^2\theta$$
, where $0 \le \theta \le 2\pi$. [5]

5. [Maximum mark: 12]

Let θ be such that $\pi < \theta < 2\pi$ and $\tan \theta = 4$.

a) Find the exact values of $\sin \theta$ and $\cos \theta$.

b) Calculate the exact value of
$$\frac{\sin(\pi - \theta) + \tan(2\pi + \theta)}{\cos(-\theta) \times \sin(2\pi - \theta)}$$
[4]

c) Prove the identity

$$\frac{1}{1+\cos\alpha} + \frac{1}{1-\cos\alpha} \equiv \frac{2}{\sin^2\alpha}$$
 and hence find the value of $\frac{1}{1+\cos\theta} + \frac{1}{1-\cos\theta}$.

[4]

[4]

6. [Maximum mark: 11]

Let $f(x) = \frac{1}{2}x^2 + x - \frac{3}{2}$, where $x \in \mathbb{R}$.

a) Sketch the graph of y = f(x). Clearly indicate axes intercepts and the coordinates of the vertex.

b) State the set of all possible value of p, for which the equation

$$f(x) = p$$

has two distinct real solutions.

c) On the same set of axes sketch the graph of $y = -\frac{1}{2}x + \frac{7}{2}$. Clearly indicate axes intercepts and the coordinates of points of intersections of the two graphs. [3]

d) Find the set of all possible value of c, for which the line $y = -\frac{1}{2}x + c$ intersects the parabola y = f(x) twice. [4]

[1]

[3]