1. Given  $\triangle ABC$ , with lengths shown in the diagram below, find the length of the line segment [CD].



diagram not to scale (Total 5 marks)

## METHOD 1

| $\frac{\sin C}{7} = \frac{\sin 40}{5}$                                       | M1(A1)     |
|------------------------------------------------------------------------------|------------|
| $B\hat{C}D = 64.14^{\circ}$                                                  | A1         |
| $CD = 2 \times 5\cos 64.14$                                                  | M1         |
| Note: Also allow use of sine or cosine rule.                                 |            |
| CD = 4.36                                                                    | A1         |
| METHOD 2                                                                     |            |
| let AC = x<br>cosine rule<br>$5^2 = 7^2 + x^2 - 2 \times 7 \times x \cos 40$ | M1A1       |
| $x^2 - 10.7x + 24 = 0$                                                       |            |
| $x = \frac{10.7\pm\sqrt{(10.7)^2 - 4 \times 24}}{2}$                         | (M1)       |
| x = 7.54; 3.18<br>CD is the difference in these two values = 4.36            | (A1)<br>A1 |

Note: Other methods may be seen.

[5]

IB Questionbank Mathematics Higher Level 3rd edition

- 2. The depth, h(t) metres, of water at the entrance to a harbour at t hours after midnight on a
- particular day is given by

$$h(t) = 8 + 4\sin\left(\frac{\pi t}{6}\right), 0 \le t \le 24$$

- (a) Find the maximum depth and the minimum depth of the water.
- (b) Find the values of *t* for which  $h(t) \ge 8$ .
- (a) Either finding depths graphically, using  $\sin \frac{\pi t}{6} = \pm 1$ or solving h'(t) = 0 for t (M1)  $h(t)_{max} = 12$  (m),  $h(t)_{min} = 4$  (m) A1A1 N3
- (b) Attempting to solve  $8 + 4 \sin \frac{\pi t}{6} = 8$  algebraically or graphically (M1)  $t \in [0, 6] \cup [12, 18] \cup \{24\}$  A1A1 N3
- 3.



The above three dimensional diagram shows the points P and Q which are respectively west and south-west of the base R of a vertical flagpole RS on horizontal ground. The angles of elevation of the top S of the flagpole from P and Q are respectively  $35^{\circ}$  and  $40^{\circ}$ , and PQ = 20 m.

Determine the height of the flagpole.

| $PR = h \tan 55^\circ$ , $QR = h \tan 50^\circ$ where $RS = h$                                      | M1A1A1 |
|-----------------------------------------------------------------------------------------------------|--------|
| Use the cosine rule in triangle PQR.                                                                | (M1)   |
| $20^2 = h^2 \tan^2 55^\circ + h^2 \tan^2 50^\circ - 2h \tan 55^\circ h \tan 50^\circ \cos 45^\circ$ | A1     |
| $h^2 = \frac{400}{\tan^2 55^\circ + \tan^2 50^\circ - 2\tan 55^\circ \tan 50^\circ \cos 45^\circ}$  | (A1)   |
| = 379.9                                                                                             | (A1)   |
| h = 19.5 (m)                                                                                        | A1     |

# [8]

2

(Total 8 marks)

(3)

(3) (Total 6 marks)



**4.** The radius of the circle with centre C is 7 cm and the radius of the circle with centre D is 5 cm. If the length of the chord [AB] is 9 cm, find the area of the shaded region enclosed by the two arcs AB.



diagram not to scale (Total 7 marks)

$$\alpha = 2 \arcsin\left(\frac{4.5}{7}\right) \Rightarrow \alpha = 1.396... = 80.010^{\circ} ...)$$
M1(A1)  
$$\beta = 2 \arcsin\left(\frac{4.5}{5}\right) \Rightarrow \beta = 2.239... = 128.31^{\circ}...)$$
(A1)

Note: Allow use of cosine rule.

area 
$$P = \frac{1}{2} \times 7^2 \times (\alpha - \sin \alpha) = 10.08...$$
 M1(A1)

area 
$$Q = \frac{1}{2} \times 5^2 \times (\beta - \sin \beta) = 18.18...$$
 (A1)

Note: The M1 is for an attempt at area of sector minus area of triangle.

Note: The use of degrees correctly converted is acceptable.

5. The points P and Q lie on a circle, with centre O and radius 8 cm, such that  $\hat{POQ} = 59^{\circ}$ .



diagram not to scale

Find the area of the shaded segment of the circle contained between the arc PQ and the chord [PQ].

(Total 5 marks)

[5]

| area of triangle POQ = $\frac{1}{2}$ 8 <sup>2</sup> sin 59°              | M1   |
|--------------------------------------------------------------------------|------|
| = 27.43                                                                  | (A1) |
| area of sector = $\pi 8^2 \frac{59}{360}$                                | M1   |
| = 32.95                                                                  | (A1) |
| area between arc and chord = $32.95 - 27.43$<br>= $5.52 \text{ (cm}^2$ ) | A1   |

6. The graph below shows  $y = a \cos(bx) + c$ .



Find the value of *a*, the value of *b* and the value of *c*.

| a = 3                         | A1   |     |
|-------------------------------|------|-----|
| c = 2                         | A1   |     |
| period = $\frac{2\pi}{b} = 3$ | (M1) |     |
| $b = \frac{2\pi}{3} (= 2.09)$ | A1   |     |
|                               |      | [4] |

7. The vertices of an equilateral triangle, with perimeter *P* and area *A*, lie on a circle with radius *r*. Find an expression for  $\frac{P}{A}$  in the form  $\frac{k}{r}$ , where  $k \in \mathbb{Z}^+$ .

(Total 6 marks)

(Total 4 marks)

let the length of one side of the triangle be x consider the triangle consisting of a side of the triangle and two radii

## EITHER

$$x^{2} = r^{2} + r^{2} - 2r^{2} \cos 120^{\circ}$$
  
=  $3r^{2}$  M1

## OR

 $x = 2r \cos 30^{\circ}$ 

#### THEN

$$x = r\sqrt{3}$$
 A1

so perimeter = 
$$3\sqrt{3} r$$
 A1

now consider the area of the triangle

area = 
$$3 \times \frac{1}{2} r^2 \sin 120^\circ$$
 M1  
=  $3 \times \frac{\sqrt{3}}{4} r^2$  A1

$$\frac{P}{A} = \frac{3\sqrt{3}r}{\frac{3\sqrt{3}}{4}r^2}$$
$$= \frac{4}{r}$$
A1

Note: Accept alternative methods

[6]

M1

In the right circular cone below, O is the centre of the base which has radius 6 cm.
 The points B and C are on the circumference of the base of the cone. The height AO of the cone is 8 cm and the angle BÔC is 60°.



diagram not to scale

Calculate the size of the angle  $\hat{BAC}$ .

| AC = AB = 10 (cm)<br>triangle OBC is equilateral<br>BC = 6 (cm)                      | A1<br>(M1)<br>A1 |
|--------------------------------------------------------------------------------------|------------------|
| EITHER                                                                               |                  |
| $BAC = 2 \arcsin \frac{3}{10}$                                                       | M1A1             |
| BÂC = 34.9° (accept 0.609 radians)                                                   | A1               |
| OR                                                                                   |                  |
| $\cos \hat{BAC} = \frac{10^2 + 10^2 - 6^2}{2 \times 10 \times 10} = \frac{164}{200}$ | M1A1             |
| $B\hat{A}C = 34.9^{\circ}$ (accept 0.609 radians)                                    | A1               |

Note: Other valid methods may be seen.

(Total 6 marks)

[6]

9. Consider the triangle ABC where  $BAC = 70^{\circ}$ , AB = 8 cm and AC = 7 cm. The point D on the side BC is such that  $\frac{BD}{DC} = 2$ . Determine the length of AD.

(Total 6 marks)

- **10.** Triangle ABC has AB = 5 cm, BC = 6 cm and area 10 cm<sup>2</sup>.
  - (a) Find  $\sin \hat{B}$ .
  - (b) **Hence**, find the two possible values of AC, giving your answers correct to two decimal places.

(4) (Total 6 marks)

(2)

(a) 
$$\operatorname{area} = \frac{1}{2} \times BC \times AB \times \sin B$$
 (M1)  
 $\left(10 = \frac{1}{2} \times 5 \times 6 \times \sin B\right)$   
 $\sin \hat{B} = \frac{2}{3}$  A1

(b) 
$$\cos B = \pm \frac{\sqrt{5}}{3} (= \pm 0.7453...) \text{ or } B = 41.8... \text{ and } 138.1...$$
 (A1)  
 $AC^2 = BC^2 + AB^2 - 2 \times BC \times AB \times \cos B$  (M1)

AC = 
$$\sqrt{5^2 + 6^2 - 2 \times 5 \times 6 \times 0.7453}$$
 or  $\sqrt{5^2 + 6^2 + 2 \times 5 \times 6 \times 0.7453}$  ...  
AC = 4.03 or 10.28 A1A1

[6]

11. The diagram below shows a curve with equation  $y = 1 + k \sin x$ , defined for  $0 \le x \le 3\pi$ .



The point A $\left(\frac{\pi}{6}, -2\right)$  lies on the curve and B(*a*, *b*) is the maximum point.

(a) Show that k = -6.

(a)

(b)

(b) Hence, find the values of *a* and *b*.

(3) (Total 5 marks)

(2)

| $-2 = 1 + k \sin\left(\frac{\pi}{6}\right)$ | M1 |    |
|---------------------------------------------|----|----|
| $-3 = \frac{1}{2}k$                         | A1 |    |
| <i>k</i> = –6                               | AG | N0 |
| METHOD 1                                    |    |    |
| $maximum \implies \sin x = -1$              | M1 |    |
| $a = \frac{3\pi}{2}$                        | A1 |    |
| b = 1 - 6(-1)<br>= 7                        | A1 | N2 |

12. The diagram below shows two straight lines intersecting at O and two circles, each with centre O. The outer circle has radius R and the inner circle has radius r.



diagram not to scale

Consider the shaded regions with areas *A* and *B*. Given that A : B = 2 : 1, find the **exact** value of the ratio R : r. (Total 5 marks)

| $A = \frac{\theta}{2} \left( R^2 - r^2 \right)$                 | A1   |    |     |
|-----------------------------------------------------------------|------|----|-----|
| $B = \frac{\theta}{2}r^2$                                       | A1   |    |     |
| from <i>A</i> : $B = 2:1$ , we have $\mathbb{R}^2 - r^2 = 2r^2$ | M1   |    |     |
| $R = \sqrt{3}r$                                                 | (A1) |    |     |
| hence exact value of the ratio $R$ : $r$ is $\sqrt{3}$ :1       | A1   | N0 |     |
|                                                                 |      |    | [5] |

13. A triangle has sides of length  $(n^2 + n + 1)$ , (2n + 1) and  $(n^2 - 1)$  where n > 1.

- (a) Explain why the side  $(n^2 + n + 1)$  must be the longest side of the triangle.
- (b) Show that the largest angle,  $\theta$ , of the triangle is 120°.

(5) (Total 8 marks)

(3)

| (a) | a reasonable attempt to show either that $n^2 + n + 1 > 2n + 1$ or $n^2 + n + 1 > n^2 - 1$ complete solution to each inequality | M1<br>A1A1 |     |
|-----|---------------------------------------------------------------------------------------------------------------------------------|------------|-----|
| (b) | $\cos \theta = \frac{(2n+1)^2 + (n^2 - 1)^2 - (n^2 + n + 1)^2}{2(2n+1)(n^2 - 1)}$                                               | M1A1       |     |
|     | $=\frac{-2n^3-n^2+2n+1}{2(2n+1)(n^2-1)}$                                                                                        | M1         |     |
|     | $= -\frac{(n-1)(n+1)(2n+1)}{2(2n+1)(n^2-1)}$                                                                                    | A1         |     |
|     | $=-\frac{1}{2}$                                                                                                                 | A1         |     |
|     | $\theta = 120^{\circ}$                                                                                                          | AG         |     |
|     |                                                                                                                                 |            | [8] |

14. Consider triangle ABC with  $BAC = 37.8^{\circ}$ , AB = 8.75 and BC = 6.

Find AC.

(Total 7 marks)

| $\frac{\sin B}{6.5} = \frac{\sin 35^{\circ}}{4}$                              | M1   |     |
|-------------------------------------------------------------------------------|------|-----|
| $\hat{B} = 68.8^{\circ} \text{ or } 111^{\circ}$                              | A1A1 |     |
| $\hat{C} = 76.2^{\circ} \text{ or } 33.8^{\circ} \text{ (accept 34^{\circ})}$ | A1   |     |
| $\frac{AB}{\sin C} = \frac{BC}{\sin A}$                                       |      |     |
| $\frac{AB}{\sin 76.2^{\circ}} = \frac{4}{\sin 35^{\circ}}$                    | (M1) |     |
| AB = 6.77  cm                                                                 |      |     |
| AB = 4                                                                        | A1   |     |
| sin33.8° sin 35°                                                              |      |     |
| AB = 3.88cm (accept 3.90)                                                     | A1   | [7] |
|                                                                               |      | L.1 |

15. In a triangle ABC,  $\hat{A} = 35^{\circ}$ , BC = 4 cm and AC = 6.5 cm. Find the possible values of  $\hat{B}$  and the corresponding values of AB.

| $\frac{\sin B}{6.5} = \frac{\sin 35^\circ}{4}$                                        | M1   |     |
|---------------------------------------------------------------------------------------|------|-----|
| $\hat{B} = 68.8^{\circ} \text{ or } 111^{\circ}$                                      | A1A1 |     |
| $\hat{C} = 76.2^{\circ} \text{ or } 33.8^{\circ} \text{ (accept } 34^{\circ}\text{)}$ | A1   |     |
| $\frac{AB}{\sin C} = \frac{BC}{\sin A}$ $\frac{AB}{\cos A} = \frac{4}{\cos A}$        | (M1) |     |
| $\sin 76.2^\circ \sin 35^\circ$                                                       |      |     |
| AB = 0.77  cm                                                                         |      |     |
| $\frac{AB}{\sin 33.8^{\circ}} = \frac{4}{\sin 35^{\circ}}$                            | A1   |     |
| AB = 3.88cm (accept 3.90)                                                             | A1   | -   |
|                                                                                       |      | [7] |

16. The lengths of the sides of a triangle ABC are x - 2, x and x + 2. The largest angle is 120°.

(6)  
(b) Show that the area of the triangle is 
$$\frac{15\sqrt{3}}{4}$$
.  
(3)  
(c) Find sin  $A + \sin B + \sin C$  giving your answer in the form  $\frac{p\sqrt{q}}{r}$  where  $p, q, r \in \mathbb{Z}$ .  
(4)  
(Total 13 marks)

(a)

Find the value of *x*.

(a)  
A  

$$x - 2$$
(M1)  
 $(x + 2)^2 = (x - 2)^2 + x^2 - 2(x - 2) x \cos 120^\circ$   
 $x^2 + 4x + 4 = x^2 - 4x + 4 + x^2 + x^2 - 2x$ 
(M1)  
 $0 = 2x^2 - 10x$ 
 $0 = x(x - 5)$ 
 $x = 5$ 
A1  
(b) Area =  $\frac{1}{2} \times 5 \times 3 \times \sin 120^\circ$ 
M1A1  
 $= \frac{1}{2} \times 15 \times \frac{\sqrt{3}}{2}$ 
A1  
 $= \frac{15\sqrt{3}}{4}$ 
A2  
(c)  $\sin A = \frac{\sqrt{3}}{2}$ 
 $\frac{15\sqrt{3}}{4} = \frac{1}{2} \times 5 \times 7 \times \sin B \Rightarrow \sin B = \frac{3\sqrt{3}}{14}$ 
M1A1  
Similarly  $\sin C = \frac{5\sqrt{3}}{14}$ 
A1  
 $\sin A + \sin B + \sin C = \frac{15\sqrt{3}}{14}$ 
A1

17. A farmer owns a triangular field ABC. The side [AC] is 104 m, the side [AB] is 65 m and the angle between these two sides is 60°.

Calculate the length of the third side of the field. (a)

(3)

[13]

(3) 13 Let D be a point on [BC] such that [AD] bisects the  $60^{\circ}$  angle. The farmer divides the field into two parts by constructing a straight fence [AD] of length x metres.

- (c) (i) Show that the area o the smaller part is given by  $\frac{65x}{4}$  and find an expression for the area of the larger part.
  - (ii) Hence, find the value of x in the form  $q\sqrt{3}$ , where q is an integer.

(8)

(d) Prove that  $\frac{BD}{DC} = \frac{5}{8}$ .

(6) (Total 20 marks)



(a) Using the cosine rule 
$$(a^2 = b^2 + c^2 - 2bc \cos A)$$
 (M1)  
Substituting correctly  
BC<sup>2</sup> = 65<sup>2</sup> + 104<sup>2</sup> - 2 (65) (104) cos 60°  
= 4225 + 10 816 - 6760 = 8281  
 $\Rightarrow$  BC = 91m A1 N2

(b) Finding the area using 
$$=\frac{1}{2}bc\sin A$$
 (M1)

Substituting correctly, area = 
$$\frac{1}{2}(65)(104) \sin 60^{\circ}$$
 A1  
= 1690 $\sqrt{3}$  (accept *p* = 1690) A1

(c) (i) Smaller area 
$$A_1 = \left(\frac{1}{2}\right)(65) (x) \sin 30^\circ$$
 (M1)A1

$$=\frac{65x}{4}$$
 AG N0

Larger area 
$$A_2 = \left(\frac{1}{2}\right)(104) (x) \sin 30^\circ$$
 M1  
= 26x A1 N1

N2

(ii) Using  $A_1 + A_2 = A$  (M1)

Substituting  $\frac{65x}{4} + 26x = 1690\sqrt{3}$  A1

Simplifying 
$$\frac{169x}{4} = 1690\sqrt{3}$$
 A1

Solving 
$$x = \frac{4 \times 1690 \sqrt{3}}{169}$$
  
 $\Rightarrow x = 40 \sqrt{3} \text{ (accept } q = 40)$  A1 N1

(d)Using sin rule in 
$$\triangle ADB$$
 and  $\triangle ACD$ (M1)Substituting correctly $\frac{BD}{\sin 30^{\circ}} = \frac{65}{\sin ADB} \Rightarrow \frac{BD}{65} = \frac{\sin 30^{\circ}}{\sin ADB}$ A1and $\frac{DC}{\sin 30^{\circ}} = \frac{104}{\sin ADC} \Rightarrow \frac{DC}{104} = \frac{\sin 30^{\circ}}{\sin ADC}$ A1Since  $ADB + ADC = 180^{\circ}$ R1It follows that  $\sin ADB = \sin ADC$ R1 $\frac{BD}{65} = \frac{DC}{104} \Rightarrow \frac{BD}{DC} = \frac{65}{104}$ A1 $\Rightarrow \frac{BD}{DC} = \frac{5}{8}$ AG

[20]