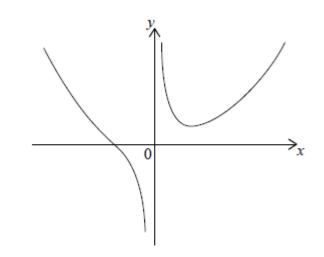
Tangent & normal lines [45 marks]

- 1. [Maximum mark: 6] 18M.1.SL.TZ2.T_14 Consider the function $f(x) = \frac{x^4}{4}$.
 - (a) Find f'(x) [1]
 - (b) Find the gradient of the graph of f at $x = -\frac{1}{2}$. [2]
 - (c) Find the *x*-coordinate of the point at which the **normal** to the graph of *f* has gradient $-\frac{1}{8}$. [3]
- 2. [Maximum mark: 7] 19M.2.SL.TZ2.T_5 Consider the function $f(x) = \frac{1}{3}x^3 + \frac{3}{4}x^2 - x - 1$.
 - (d) Find f'(x). [3]
 - (e) Find the gradient of the graph of y = f(x) at x = 2. [2]
 - (f) Find the equation of the tangent line to the graph of y = f(x) at x = 2. Give the equation in the form ax + by + d = 0 where, a, b, and $d \in \mathbb{Z}$. [2]

3.	[Maximum mark: 6] Consider the curve $y = 5x^3 - 3x$.		18N.1.SL.TZ0.T_11
	(a)	Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.	[2]
	The c		
	(b)	Find the gradient of this tangent at point P.	[2]
	(c)	Find the equation of this tangent. Give your answer in the form $y = mx + c$.	n [2]
4.	[Maximum mark: 7] Consider the curve $y=x^2-4x+2.$		EXN.1.SL.TZ0.7
	(a)	Find an expression for $\frac{\mathrm{d}y}{\mathrm{d}x}$.	[1]
	(b)	Show that the normal to the curve at the point where $x=1$ i $2y-x+3=0.$	is [6]
5.		mum mark: 7] unction f is defined by $f(x)=rac{2}{x}+3x^2-3,\;x eq 0.$	22M.1.SL.TZ1.9
	(a)	Find $f\prime(x)$.	[3]


(b) Find the equation of the normal to the curve y=f(x) at $(1,\ 2)$ in the form ax+by+d=0, where $a,\ b,\ d\in\mathbb{Z}.$ [4]

6.	[Maximum mark: 6]	20N.1.SL.TZ0.T_13	
	Consider the graph of the function $f(x)=x^2-rac{k}{x}.$		
	(a) Write down $f\prime(x)$.	[3]	

The equation of the tangent to the graph of y=f(x) at x=-2 is 2y=4-5x.

7. [Maximum mark: 6]

The diagram shows the curve $y=rac{x^2}{2}+rac{2a}{x},\;x
eq 0.$

The equation of the vertical asymptote of the curve is x = k.

- (a)Write down the value of k.[1](b)Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.[3](c)At the point where x = 2, the gradient of the tangent to the
- (c) At the point where x=2, the gradient of the tangent to the curve is 0.5.

Find the value of *a*.

[2]

© International Baccalaureate Organization, 2024