Transformations [86 marks]

1.	[Maximum mark: 16] EXM.2.AHL.TZ0.16		
	The m	natrices A and B are defined by $A=egin{pmatrix} 3&-2\2&4 \end{pmatrix}$ and $B=egin{pmatrix} -1&0\0&1 \end{pmatrix}$.	
	(a)	Describe fully the geometrical transformation represented by B.	[2]
		gle X is mapped onto triangle Y by the transformation represented by AB. oordinates of triangle Y are (0, 0), ($-30, -20$) and ($-16, 32$).	
	(b)	Find the coordinates of triangle X.	[5]
	(c.i)	Find the area of triangle X.	[2]
	(c.ii)	Hence find the area of triangle Y.	[3]
	(d)	Matrix A represents a combination of transformations:	
		A stretch, with scale factor 3 and y-axis invariant; Followed by a stretch, with scale factor 4 and x-axis invariant; Followed by a transformation represented by matrix C.	
		Find matrix C.	[4]

2. [Maximum mark: 12]

EXM.2.AHL.TZ0.15

[2]

The matrix A is defined by $A = egin{pmatrix} 3 & 0 \ 0 & 2 \end{pmatrix}$.

(a) Describe fully the geometrical transformation represented by A. [5]
 Pentagon, P, which has an area of 7 cm², is transformed by A.

(b) Find the area of the image of P.

The matrix B is defined by $B=rac{1}{2}egin{pmatrix} 3\sqrt{3} & 3 \ -2 & 2\sqrt{3} \end{pmatrix}$.

B represents the combined effect of the transformation represented by a matrix X, followed by the transformation represented by A.

- (c) Find the matrix X. [3]
- (d) Describe fully the geometrical transformation represented by X. [2]

3. [Maximum mark: 7]

The matrices $m{P}=egin{pmatrix} 3&1\\0&1 \end{pmatrix}$ and $m{Q}=egin{pmatrix} -4&1\\1&3 \end{pmatrix}$ represent two transformations.

A triangle T is transformed by P, and this image is then transformed by Q to form a new triangle, T'.

(a) Find the single matrix that represents the transformation
$$T\prime \!
ightarrow T$$
, which will undo the transformation described above. [4]

The area of $T\prime$ is $273~{
m cm}^2$.

- (b) Using your answer to part (a), or otherwise, determine the area of T. [3]
- 4. [Maximum mark: 8] 22N.1.AHL.TZ0.9 The transformation T is represented by the matrix $m{M}=egin{pmatrix}2&-4\\3&1\end{pmatrix}$. A pentagon with an area of $12\,{
 m cm}^2$ is transformed by T.
 - (a) Find the area of the image of the pentagon. [2] Under the transformation T, the image of point X has coordinates $(2t-3,\ 6-5t)$, where $t\in\mathbb{R}.$
 - (b) Find, in terms of t, the coordinates of X. [6]

5. [Maximum mark: 18]

22M.2.AHL.TZ1.7

[3]

A transformation, T, of a plane is represented by r = Pr + q, where P is a 2×2 matrix, q is a 2×1 vector, r is the position vector of a point in the plane and r the position vector of its image under T.

The triangle OAB has coordinates (0, 0), (0, 1) and (1, 0). Under T, these points are transformed to (0, 1), $\left(\frac{1}{4}, 1 + \frac{\sqrt{3}}{4}\right)$ and $\left(\frac{\sqrt{3}}{4}, \frac{3}{4}\right)$ respectively.

- (a.i) By considering the image of (0, 0), find \boldsymbol{q} . [2]
- (a.ii) By considering the image of $(1,\ 0)$ and $(0,\ 1)$, show that

$$\boldsymbol{P} = \begin{pmatrix} \frac{\sqrt{3}}{4} & \frac{1}{4} \\ -\frac{1}{4} & \frac{\sqrt{3}}{4} \end{pmatrix}.$$
[4]

 $oldsymbol{P}$ can be written as $oldsymbol{P}=oldsymbol{R}oldsymbol{S}$, where $oldsymbol{S}$ and $oldsymbol{R}$ are matrices.

 $m{S}$ represents an enlargement with scale factor 0.~5, centre (0,~0).

 \boldsymbol{R} represents a rotation about (0, 0).

- (b) Write down the matrix S. [1]
- (c.i) Use $\boldsymbol{P} = \boldsymbol{R}\boldsymbol{S}$ to find the matrix \boldsymbol{R} . [4]

(c.ii) Hence find the angle and direction of the rotation represented by $oldsymbol{R}$. [3]

The transformation T can also be described by an enlargement scale factor $\frac{1}{2}$, centre (a, b), followed by a rotation about the same centre (a, b).

(d.i)
Write down an equation satisfied by
$$\begin{pmatrix} a \\ b \end{pmatrix}$$
. [1]

(d.ii) Find the value of a and the value of b.

A flying drone is programmed to complete a series of movements in a horizontal plane relative to an origin O and a set of x-y-axes.

In each case, the drone moves to a new position represented by the following transformations:

- a rotation anticlockwise of $\frac{\pi}{6}$ radians about O• a reflection in the line $y = \frac{x}{\sqrt{3}}$
- a rotation clockwise of $\frac{\pi}{3}$ radians about O.

All the movements are performed in the listed order.

(a.i)	Write down each of the transformations in matrix form, clearly stating which matrix represents each transformation.	[6]
(a.ii)	Find a single matrix $oldsymbol{P}$ that defines a transformation that represents the overall change in position.	[3]
(a.iii)	Find $oldsymbol{P}^2$.	[1]
(a.iv)	Hence state what the value of $oldsymbol{P}^2$ indicates for the possible movement of the drone.	[2]
(b)	Three drones are initially positioned at the points A,B and $C.$ After performing the movements listed above, the drones are positioned at points $A\prime,B\prime$ and $C\prime$ respectively.	
	Show that the area of triangle ABC is equal to the area of triangle $A\prime B\prime C\prime$.	[2]
(c)	Find a single transformation that is equivalent to the three transformations represented by matrix $oldsymbol{P}$.	[4]

7. [Maximum mark: 7]

A geometric transformation
$$T: \begin{pmatrix} x \\ y \end{pmatrix} \mapsto \begin{pmatrix} x' \\ y' \end{pmatrix}$$
 is defined by
$$T: \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} 7 & -10 \\ 2 & -3 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} -5 \\ 4 \end{pmatrix}.$$

(a) Find the coordinates of the image of the point (6, -2). [2]

(b) Given that
$$T: \begin{pmatrix} p \\ q \end{pmatrix} \mapsto 2 \begin{pmatrix} p \\ q \end{pmatrix}$$
, find the value of p and the value of q . [3]

(c) A triangle L with vertices lying on the xy plane is transformed by T.

Explain why both L and its image will have exactly the same area.

[2]

© International Baccalaureate Organization, 2024