Derivatives [191 marks]

- 1. [Maximum mark: 6] 19M.2.SL.TZ1.S_3 Consider the function $f\left(x
 ight)=x^2\mathrm{e}^{3x}$, $x\in\mathbb{R}$.
 - (a) Find f'(x). [4]
 - (b) The graph of f has a horizontal tangent line at x = 0 and at x = a. Find a. [2]
- 2. [Maximum mark: 7] 22M.1.SL.TZ1.9 The function f is defined by $f(x)=rac{2}{x}+3x^2-3, \ x
 eq 0.$
 - (a) Find f'(x). [3]
 - (b) Find the equation of the normal to the curve y=f(x) at $(1,\ 2)$ in the form ax+by+d=0, where $a,\ b,\ d\in\mathbb{Z}.$ [4]
- 3. [Maximum mark: 7] EXN.1.SL.TZ0.7 Consider the curve $y = x^2 4x + 2$.
 - (a) Find an expression for $\frac{\mathrm{d}y}{\mathrm{d}x}$. [1]
 - (b) Show that the normal to the curve at the point where x=1 is 2y-x+3=0. [6]

- 4. [Maximum mark: 16] 18M.1.SL.TZ2.S_10 Consider a function f. The line ι_1 with equation y=3x+1 is a tangent to the graph of f when x=2
 - (a.i) Write down f'(2). [2]
 - (a.ii) Find f(2). [2]

Let $g\left(x
ight)=f\left(x^{2}+1
ight)$ and P be the point on the graph of g where x=1.

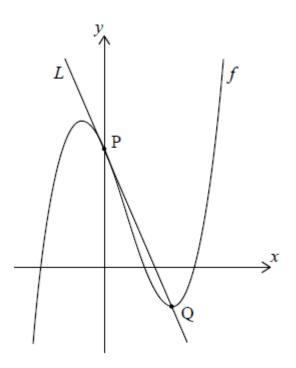
- (b) Show that the graph of g has a gradient of 6 at P. [5]
- (c) Let L_2 be the tangent to the graph of g at P. L_1 intersects L_2 at the point Q.

- 5. [Maximum mark: 8] EXN.1.AHL.TZ0.15 Consider the function $f(x)=\sqrt{-ax^2+x+a}, \; a\in \mathbb{R}^+.$
 - (a) Find f'(x). [2]

For a>0 the curve y=f(x) has a single local maximum.

(b)	Find in terms of a the value of x at which the maximum occurs.	[2]
(c)	Hence find the value of a for which y has the smallest possible	
	maximum value.	[4]

6. [Maximum mark: 16] 18N.1.SL Let $f(x) = x^3 - 2x^2 + ax + 6$. Part of the graph of f is shown in the following diagram.



The graph of f crosses the y-axis at the point P. The line ${\it L}$ is tangent to the graph of f at P.

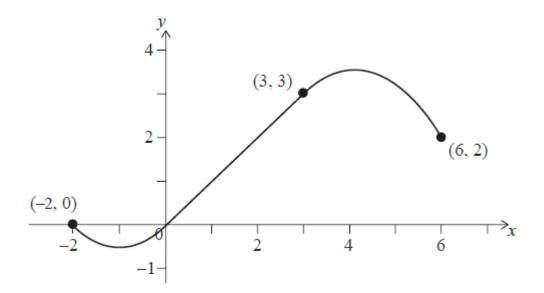
(a)	Find the coordinates of P.	[2]
(b.i)	Find $f^{\prime}\left(x ight)$.	[2]
(b.ii)	Hence, find the equation of l in terms of a .	[4]
(c)	The graph of f has a local minimum at the point Q. The line ι passes through Q.	
	Find the value of <i>a</i> .	[8]

7.	-	mum mark: 7] der f(x), g(x) and h(x), for x $\in \mathbb{R}$ where h(x) = $(f \circ g)$ (x).	18M.1.SL.TZ1.S_7
		that $g(3) = 7$, $g'(3) = 4$ and $f'(7) = -5$, find the gradient of the al to the curve of h at $x = 3$.	[7]
8.	[Maximum mark: 6] Consider the curve $y=2x(4-{ m e}^x)$.		22M.1.AHL.TZ1.8
	(a.i)	Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.	[2]
	(a.ii)	Find $\frac{\mathrm{d}^2 y}{\mathrm{d}x^2}$.	[2]
	(b)	The curve has a point of inflexion at $(a,\ b).$	
		Find the value of a .	[2]

- 9. [Maximum mark: 5] 23M.1.SL.TZ1.5 Line L_1 is tangent to the graph of a function f(x) at the point $\mathrm{P}(3, -1)$. Line L_2 is given by the equation $y=-\frac{1}{2}x-\frac{5}{2}$ and is perpendicular to L_1 .
 - (a)Write down the gradient of L_1 .[1](b)Find the equation of L_1 in the form y = mx + c.[2]
 - (c) Show that L_2 is not the line that is normal to f(x) at point P. [2]

10. [Maximum mark: 9]

23M.1.AHL.TZ1.10 A decorative hook can be modelled by the curve with equation y = f(x). The graph of y=f(x) is shown and consists of a line segment from $(0,\ 0)$ to $(3,\ 3)$ and two sections formed by quadratic curves.



Write down the equation of the line segment for $0 \leq x \leq 3.$ (a) [1]

The quadratic curve, with endpoints $(-2,\ 0)$ and $(0,\ 0)$, has the same gradient at (0, 0) as the line segment.

Find the equation of the curve between (-2, 0) and (0, 0). (b) [3]

The second quadratic curve, with endpoints $(3,\;3)$ and $(6,\;2)$, has the same gradient at $(3,\ 3)$ as the line segment.

(c)	Find the equation of this curve.	[4]
(d)	Write down f as a piecewise function.	[1]

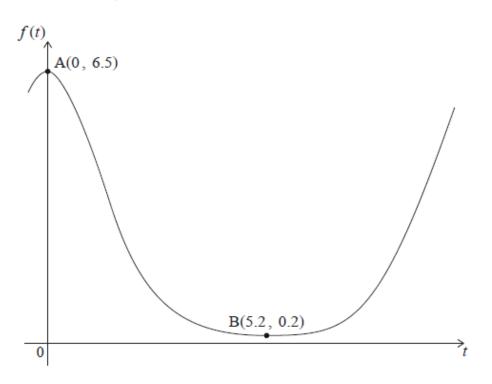
11.	-	[Maximum mark: 7] Consider the function $f(x)=x^2-rac{3}{x},\;x eq 0.$	
	(a)	Find $f\prime(x)$.	[2]
	Line L is a tangent to $f(x)$ at the point $(1,\ -2)$.		
	(b)	Use your answer to part (a) to find the gradient of $L.$	[2]
	(c)	Determine the number of lines parallel to L that are tangent to $f(x)$. Justify your answer.	[3]
12.	[Maxir	num mark: 14]	19M.2.SL.TZ1.T_6

[Maximum mark: 14] 19M.2.SL.1Z1.1_6 The function $f\left(x
ight)=rac{1}{3}x^3+rac{1}{2}x^2+kx+5$ has a local maximum and a local minimum.The local maximum is at x=-3.

(a)	Show that $k=-6.$	[5]
(b)	Find the coordinates of the local minimum .	[2]
(c)	Write down the interval where the gradient of the graph of $f\left(x ight)$ is negative.	[2]
(d)	Determine the equation of the normal at $x=-2$ in the form $y=mx+c$.	[5]

13. [Maximum mark: 8]

A function f is of the form $f(t)=p\mathrm{e}^{q\cos(rt)},\ p,\ q,\ r\in\mathbb{R}^+.$ Part of the graph of f is shown.



The points ${
m A}$ and ${
m B}$ have coordinates ${
m A}(0,\ 6.\ 5)$ and ${
m B}(5.\ 2,\ 0.\ 2)$, and lie on f.

The point \boldsymbol{A} is a local maximum and the point \boldsymbol{B} is a local minimum.

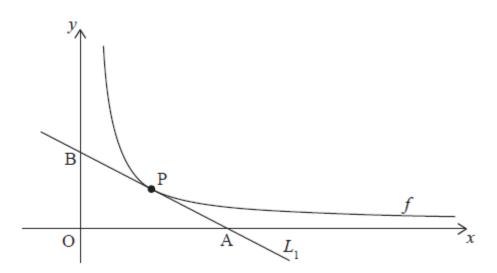
Find the value of p, of q and of r.

[8]

14. [Maximum mark: 15] 20N.1.SL.TZ0.S_10

The following diagram shows part of the graph of $f(x)=rac{k}{x}$, for $x > 0, \ k > 0.$

Let $\mathrm{P}ig(p, \ rac{k}{p}ig)$ be any point on the graph of f. Line L_1 is the tangent to the graph of f at P.



(a.i) Find
$$f'(p)$$
 in terms of k and p . [2]

Show that the equation of L_1 is $kx + p^2y - 2pk = 0$. (a.ii) [2]

Line L_1 intersects the x-axis at point $\mathrm{A}(2p,\ 0)$ and the y-axis at point B.

(b) Find the area of triangle
$$AOB$$
 in terms of k .

The graph of f is translated by $\binom{4}{3}$ to give the graph of g.

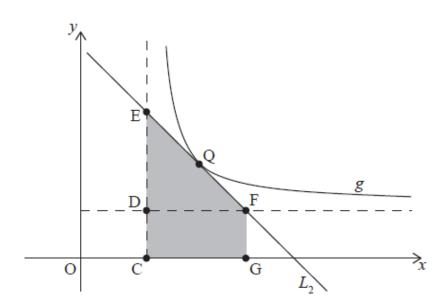
In the following diagram:

(c)

- point Q lies on the graph of q
- points C , D and E lie on the vertical asymptote of g
- points \mathbf{D} and \mathbf{F} lie on the horizontal asymptote of q
- point G lies on the x-axis such that FG is parallel to DC.

[5]

Line L_2 is the tangent to the graph of g at Q, and passes through E and F.



Given that triangle ${
m EDF}$ and rectangle ${
m CDFG}$ have equal [6] areas, find the gradient of L_2 in terms of p.

- 15. [Maximum mark: 6] 20N.1.SL.TZ0.T_13 Consider the graph of the function $f(x) = x^2 rac{k}{x}$.
 - (a) Write down f'(x). [3]

The equation of the tangent to the graph of y=f(x) at x=-2 is 2y=4-5x.

(c) Find the value of k. [2]

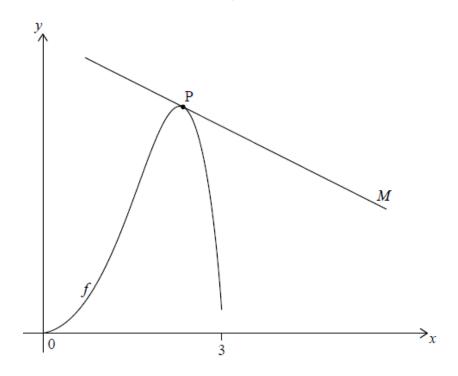
16.	[Maximum mark: 15]	19M.1.SL.TZ2.S_9
	Let $ heta$ be an obtuse angle such that $\sin heta=rac{3}{5}$.	

(a) Find the value of
$$\tan \theta$$
. [4]

(b) Line L passes through the origin and has a gradient of $\tan \theta$. Find the equation of L. [2]

Let
$$f(x) = \mathrm{e}^x \sin x - rac{3x}{4}$$
.

- (c) Find the derivative of f.
- (d) The following diagram shows the graph of f for $0 \le x \le 3$. Line M is a tangent to the graph of f at point P.



Given that M is parallel to L, find the x-coordinate of P.

[4]

[5]

- 17. [Maximum mark: 16] 19M.2.SL.TZ1.S_9 Let $f(x) = \frac{16}{x}$. The line L is tangent to the graph of f at x = 8.
 - (a) Find the gradient of L.

[2]

[2]

L can be expressed in the form $\mathbf{r} = \begin{pmatrix} 8 \\ 2 \end{pmatrix} + t \mathbf{u}.$

(b) Find *u*.

The direction vector of y = x is $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$.

- (c) Find the acute angle between y = x and L. [5]
- (d.i) Find $(f \circ f)(x)$. [3]
- (d.ii) Hence, write down $f^{-1}(x)$. [1]
- (d.iii) Hence or otherwise, find the obtuse angle formed by the tangent line to f at x = 8 and the tangent line to f at x = 2. [3]
- 18. [Maximum mark: 7] 19M.2.SL.TZ2.T_5 Consider the function $f(x) = \frac{1}{3}x^3 + \frac{3}{4}x^2 - x - 1$.
 - (d) Find f'(x). [3]
 - (e) Find the gradient of the graph of $y=f\left(x
 ight)$ at x=2. [2]
 - (f) Find the equation of the tangent line to the graph of y = f(x) at x = 2. Give the equation in the form ax + by + d = 0 where, a, b, and $d \in \mathbb{Z}$. [2]

19.		mum mark: 4] we the tangent to the curve $y=x{ m e}^{2x}$ at the point (1, ${ m e}^2$).	19M.2.AHL.TZ1.H_1
	Find t	he coordinates of the point where l meets the x -axis.	[4]
20.	-	mum mark: 6] der the curve $y = 5x^3 - 3x$.	18N.1.SL.TZ0.T_11
	(a)	Find $\frac{\mathrm{d}y}{\mathrm{d}x}$.	[2]
	The cu		
	(b)	Find the gradient of this tangent at point P.	[2]
	(c)	Find the equation of this tangent. Give your answer in the for $y = mx + c$.	rm [2]
21.	[Maximum mark: 6] Consider the function $f\left(x ight)=rac{x^{4}}{4}.$		18M.1.SL.TZ2.T_14
	(a)	Find f'(x)	[1]
	(b)	Find the gradient of the graph of f at $x=-rac{1}{2}.$	[2]
	(c)	Find the <i>x</i> -coordinate of the point at which the normal to the graph of <i>f</i> has gradient $-\frac{1}{8}$.	[3]

© International Baccalaureate Organization, 2024