
Models [71 marks]

1. [Maximum mark: 7] EXN.1.SL.TZ0.6 The size of the population (P) of migrating birds in a particular town can be approximately modelled by the equation $P = a \sin(bt) + c, \ a, b, c \in \mathbb{R}^+$, where t is measured in months from the time of the initial measurements.

In a 12 month period the maximum population is 2600 and occurs when t=3 and the minimum population is 800 and occurs when t=9.

This information is shown on the graph below.

[2]

(a.ii) Find the value of *b*. [2]

(a.iii) Find the value of *c*. [1]

(b) Find the value of t at which the population first reaches 2200. [2]

2.	[Maximum mark: 5] A factory produces engraved gold disks. The cost C of the disks is diproportional to the cube of the radius r of the disk. A disk with a radius of 0.8 cm costs 375 US dollars (USD).		EXN.1.SL.TZ y	0.2
	(a)	Find an equation which links C and $r.$		[3]
	(b)	Find, to the nearest USD, the cost of disk that has a radius of $1.1\mathrm{cm}.$		[2]

3. [Maximum mark: 13]

EXM.2.SL.TZ0.3

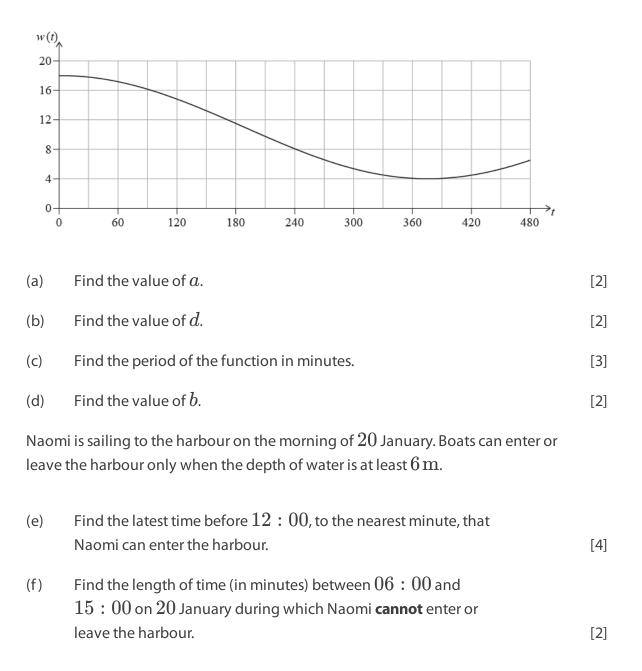
Urvashi wants to model the height of a moving object. She collects the following data showing the height, $h\,$ metres, of the object at time t seconds.

t (seconds)	2	5	7
h (metres)	34	38	24

She believes the height can be modeled by a quadratic function,

$$h\left(t
ight)=at^{2}+bt+c$$
 , where $a,\,b,\,c\in\mathbb{R}.$

- (a) Show that 4a + 2b + c = 34. [1]
- (b) Write down two more equations for a, b and c. [3]
- (c) Solve this system of three equations to find the value of a, b
 and c. [4]


Hence find

(d.i)when the height of the object is zero.[3](d.ii)the maximum height of the object.[2]

4. [Maximum mark: 15]

The depth of water, w metres, in a particular harbour can be modelled by the function $w(t) = a \cos{(bt^{\circ})} + d$ where t is the length of time, in minutes, after 06:00.

On 20 January, the first high tide occurs at 06:00, at which time the depth of water is $18 \, m$. The following low tide occurs at 12:15 when the depth of water is $4 \, m$. This is shown in the diagram.

5. [Maximum mark: 6] 22N.1.SL.TZ0.5 Celeste heated a cup of coffee and then let it cool to room temperature. Celeste found the coffee's temperature, T, measured in $^{\circ}$ C, could be modelled by the following function,

$$T(t) = 71\mathrm{e}^{-0.0514t} + 23, \ t \ge 0,$$

where t is the time, in minutes, after the coffee started to cool.

(a)	Find the coffee's temperature 16 minutes after it started to cool.	[2]	
The graph of T has a horizontal asymptote.			
(1.)			
(b)	Write down the equation of the horizontal asymptote.	[1]	
(c)	Write down the room temperature.	[1]	
(d)	Given that $T^{-1}ig(50ig)=k$, find the value of k .	[2]	

6. [Maximum mark: 6]

Stars are classified by their brightness. The brightest stars in the sky have a magnitude of 1. The magnitude, m, of another star can be modelled as a function of its brightness, b, relative to a star of magnitude 1, as shown by the following equation.

22N.1.SL.TZ0.10

 $m = 1 - 2.5 \log_{10}(b)$

The star called Acubens has a brightness of 0.0525.

(a)	Find the magnitude of Acubens.	[2]
	has a magnitude of 7 and is the least bright star visible without ification.	
(b)	Find the brightness of Ceres.	[2]
(c)	Find how many times brighter Acubens is compared to Ceres.	[2]

[1]

7. [Maximum mark: 6]

(d)

A cat runs inside a circular exercise wheel, making the wheel spin at a constant rate in an anticlockwise direction. The height, $h\,{
m cm}$, of a fixed point, ${
m P}$, on the wheel can be modelled by $h(t) = a\,\sin(bt) + c$ where t is the time in seconds and $a, \ b, \ c \in \mathbb{R}^+$.

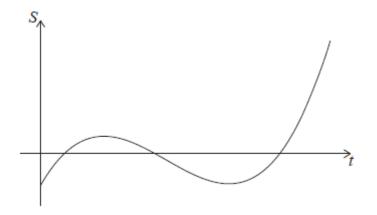
When t=0, point P is at a height of $78\,\mathrm{cm}$.

(a)	Write down the value of <i>C</i> .	[1]
Wher	$t=4$, point ${ m P}$ first reaches its maximum height of $143{ m cm}$.	
(b.i)	Find the value of a .	[1]
(b.ii)	Find the value of b .	[2]
(c)	Write down the minimum height of point ${ m P}.$	[1]
	the cat is tired, and it takes twice as long for point ${ m P}$ to complete one ution at a new constant rate.	
(d)	Write down the new value of b .	[1]

8. [Maximum mark: 5]

The height of a baseball after it is hit by a bat is modelled by the function

$$h(t) = -4.8t^2 + 21t + 1.2$$


where h(t) is the height in metres above the ground and t is the time in seconds after the ball was hit.

(a)	Write down the height of the ball above the ground at the instant it is hit by the bat.	[1]
(b)	Find the value of t when the ball hits the ground.	[2]
(c)	State an appropriate domain for t in this model.	[2]

[1]

9. [Maximum mark: 8]

The graph below shows the average savings, S thousand dollars, of a group of university graduates as a function of t, the number of years after graduating from university.

 (a) Write down one feature of this graph which suggests a cubic function might be appropriate to model this scenario.

The equation of the model can be expressed in the form $S=at^3+bt^2+ct+d$, where $a,\ b,\ c$ and d are real constants.

The graph of the model must pass through the following four points.

t	0	1	2	3
S	-5	3	-1	-5

(b.i)	Write down the value of d .	[1]
(b.ii)	Write down three simultaneous equations for $a,\ b$ and c .	[2]

(b.iii) Hence, or otherwise, find the values of a, b and c. [1]

A negative value of S indicates that a graduate is expected to be in debt.

(c) Use the model to determine the total length of time, in years, for which a graduate is expected to be in debt after graduating

from university.

© International Baccalaureate Organization, 2024