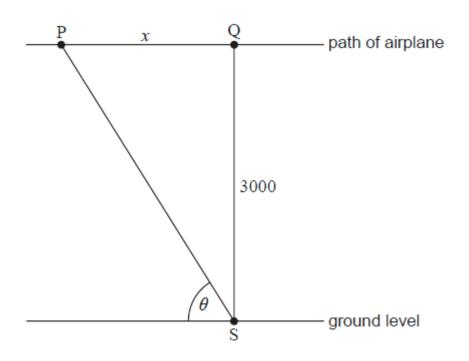
Optimization + related rates [65 marks]

1. [Maximum mark: 9]

23M.1.AHL.TZ1.17

An airplane, P, is flying at a constant altitude of $3000 \,\mathrm{m}$ at a speed of $250 \,\mathrm{m\,s^{-1}}$. Its path passes over a tracking station, S, at ground level. Let Q be the point $3000 \,\mathrm{m}$ directly above the tracking station.

At a particular time, T, as the airplane is flying towards Q, the angle of elevation, θ , of the airplane from S is increasing at a rate of 0.075 radians per second. The distance from Q to P is given by x.



(a)Use related rates to show that, at time
$$T$$
, $\frac{dx}{d\theta} = \frac{10000}{3}$.[2](b)Find $x(\theta)$, x as a function of θ .[1](c)Find an expression for $\frac{dx}{d\theta}$ in terms of $\sin \theta$.[3]

(d) Hence find the horizontal distance from the station to the plane at time
$$T.$$
 [3]

2. [Maximum mark: 5] 23M.1.AHL.TZ2.12 A spherical balloon is being inflated such that its volume is increasing at a rate of $15~{\rm cm}^3~{\rm s}^{-1}$.

(a)	Find the radius of the balloon when its volume is $288\pi~{ m cm^3}$.	[2]
(b)	Hence or otherwise, find the rate of change of the radius at this	
	instant.	[3]

3. [Maximum mark: 16]

[2]

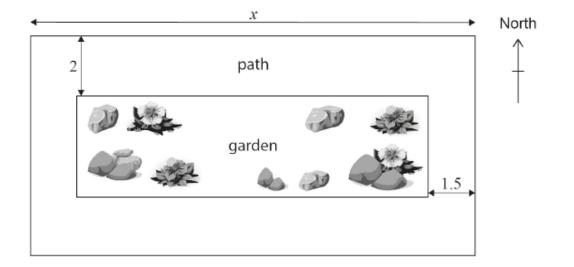
A particular park consists of a rectangular garden, of area $A\,{
m m}^2$, and a concrete path surrounding it. The park has a total area of $1200\,{
m m}^2$.

The width of the path at the north and south side of the park is $2\,\mathrm{m}$.

The width of the path at the west and east side of the park is $1.5\,\mathrm{m}.$

The length of the park (along the north and south sides) is x metres, 3 < x < 300.

diagram not to scale



(e) Find the maximum possible area of the garden. [2]

maximize the area of the garden.

4. [Maximum mark: 7] 22M.1.AHL.TZ1.16 The wind chill index W is a measure of the temperature, in $^{\circ}C$, felt when taking into account the effect of the wind.

When Frieda arrives at the top of a hill, the relationship between the wind chill index and the speed of the wind v in kilometres per hour $\left(km\,h^{-1}\right)$ is given by the equation

 $W = 19.34 - 7.405v^{0.16}$

(a) Find an expression for
$$\frac{\mathrm{d}W}{\mathrm{d}v}$$
. [2]

(b) When Frieda arrives at the top of a hill, the speed of the wind is 10 kilometres per hour and increasing at a rate of $5 \, km \, h^{-1} \, minute^{-1}$.

Find the rate of change of W at this time.

[5]

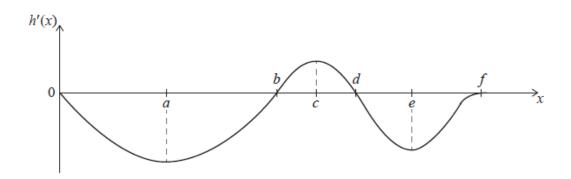
5. [Maximum mark: 5]

[1]

Juri skis from the top of a hill to a finishing point at the bottom of the hill. She takes the shortest route, heading directly to the finishing point (F).

Let h(x) define the height of the hill above ${
m F}$ at a horizontal distance x from the starting point at the top of the hill.

The graph of the **derivative** of h(x) is shown below. The graph of h'(x) has local minima and maxima when x is equal to a, c and e. The graph of h'(x) intersects the x-axis when x is equal to b, d, and f.



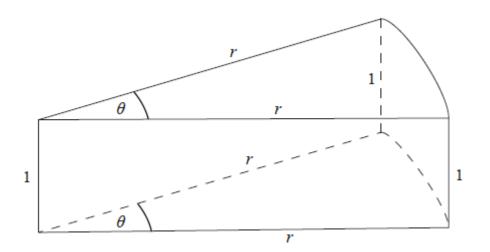
- (a.i) Identify the x value of the point where $|h\prime(x)|$ has its maximum value. [1]
- (a.ii) Interpret this point in the given context.
- (b) Juri starts at a height of 60 metres and finishes at ${f F}$, where x=f.

Sketch a possible diagram of the hill on the following pair of coordinate axes.

h(x)					
80-					
60-					
40-					
20-					
0	a	b c	d e	$f \rightarrow_x$	

[3]

The following diagram shows a frame that is made from wire. The total length of wire is equal to $15 \,\mathrm{cm}$. The frame is made up of two identical sectors of a circle that are parallel to each other. The sectors have angle θ radians and radius $r \,\mathrm{cm}$. They are connected by $1 \,\mathrm{cm}$ lengths of wire perpendicular to the sectors. This is shown in the diagram below.



(a) Show that
$$r = rac{6}{2+ heta}.$$
 [2]

The faces of the frame are covered by paper to enclose a volume, V.

(b.i) Find an expression for V in terms of θ . [2]

(b.ii) Find the expression
$$\frac{\mathrm{d}V}{\mathrm{d}\theta}$$
. [3]

(b.iii) Solve algebraically
$$\frac{dV}{d\theta} = 0$$
 to find the value of θ that will maximize the volume, V . [2]

7. [Maximum mark: 6]

A camera at point C is 3 m from the edge of a straight section of road as shown in the following diagram. The camera detects a car travelling along the road at t = 0. It then rotates, always pointing at the car, until the car passes O, the point on the edge of the road closest to the camera.

$$C \xrightarrow{3m} O$$

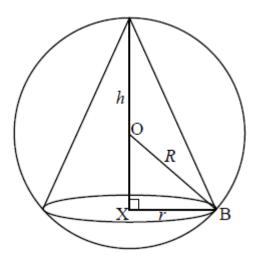
A car travels along the road at a speed of 24 ms⁻¹. Let the position of the car be X and let $O\hat{C}X = \theta$.

Find $\frac{d\theta}{dt}$, the rate of rotation of the camera, in radians per second, at the instant the car passes the point O.

[6]

8. [Maximum mark: 8]

A right circular cone of radius r is inscribed in a sphere with centre O and radius R as shown in the following diagram. The perpendicular height of the cone is h, X denotes the centre of its base and B a point where the cone touches the sphere.



- (a) Show that the volume of the cone may be expressed by $V = \frac{\pi}{3} \left(2Rh^2 h^3 \right).$ [4]
- (b) Given that there is one inscribed cone having a maximum volume, show that the volume of this cone is $\frac{32\pi R^3}{81}$. [4]

© International Baccalaureate Organization, 2024