

Markscheme

May 2022

Mathematics: applications and interpretation

Standard level

Paper 2

15 pages

	(a)	EITH annu	IER ual cycle for daylight length	R1	
		OR there	e is a minimum length for daylight (cannot be negative)	R1	
Г	Nete	OR a qua	adratic could not have a maximum and a minimum or equivalent	R1	
	Note	: Do	not accept "Paula's model is better".		[1 mark]
	(b)	(i)	4	A1	
		(ii)	12	A1	
		(iii)	<i>y</i> = 12	A1A1	
	Note	: Aw	ard A1 " $y = (a \text{ constant})$ " and A1 for that constant being 12.		

[4 marks]

[3 marks]

(c)	$f(t) = -4\cos(30t) + 12$	OR	$f(t) = -4\cos(-30t) + 12$	A1A1A1
-----	---------------------------	----	----------------------------	--------

Note: Award **A1** for b = 30 (or b = -30), **A1** for a = -4, and **A1** for d = 12. Award at most **A1A1A0** if extra terms are seen or form is incorrect. Award at most **A1A1A0** if x is used instead of t.

(d)	$10.5 = -4\cos(30t) + 12$	(M1)	
	EITHER $t_1 = 2.26585, t_2 = 9.73414$ (A	1)(A1)	
	OR		
	$t_1 = \frac{1}{30} \cos^{-1} \frac{3}{8}$	(A1)	
	$t_2 = 12 - t_1$	(A1)	
	THEN		
	9.73414 2.26585		
	7.47 (7.46828) months (0.622356years)	A1	
Note	e: Award <i>M1A1A1A0</i> for an unsupported answer of 7.46. If there is only one intersection point, award <i>M1A1A0A0</i> .		
		ı	[4 marks]

continued...

- 8 -

Question 1 continued

2.

(e)

$$\frac{16 - \left(16 + \frac{14}{60}\right)}{16 + \frac{14}{60}} \times 100\%$$
 (M1)(M1)

 Note: Award M1 for correct values and absolute value signs, M1 for ×100.
 A1

 =1.44% (1.43737...%)
 A1

 [3 marks]
 [Total 15 marks]

 (a)
 (i)
 30
 A1

 (ii)
 40
 A1

 (iii)
 40
 A1

 (i)
 w_n = 20 + (n-1)10 (=10+10n)
 A1

 (i)
 w_n = 20 + (n-1)10 (=20+10n)
 A1

 (ii)
 l_n = 30 + (n-1)10 OR 740 = 20 + 10n
 M1

 (ii)
 n = 72
 A1

 (144 tiles
 A6
 A1

 (iii)
 w₁₂ = 730
 A1

 (ii)
 w₁₂ = 730
 A1

 (iii)
 w₁₂ = 730
 A1

 (iiiii)
 w₁₂ = 130

continued...

Question 2 continued

(e)	EITHER		
	1 square metre $= 100 \mathrm{cm} \times 100 \mathrm{cm}$	(M1)	
	(so, 50 tiles) and hence 10 packs of tiles in a square metre	(A1)	
	(so each pack is $\frac{\$24.50}{10 \text{ packs}}$)		
	OR		
	area covered by one pack of tiles is $(0.2 \text{ m} \times 0.1 \text{ m} \times 5 =) 0.1 \text{ m}^2$	(A1)	
	24.5×0.1	(M1)	
	THEN		
	\$2.45 per pack (of 5 tiles)	A1	
			[3 marks]
(5)	1.08×144 (21.104)		
(1)		(111)(111)	
Note	: Award <i>M1</i> for correct numerator, <i>M1</i> for correct denominator.		
	32 (packs of tiles)	Δ1	
			[3 marks]
(g)	$35 + (32 \times 2.45)$	(M1)	
	\$113 (113.4)	A1	
			[2 marks]
		[Total	19 marks]

Note	e: Th	is (M1) can also be awarded for either a correct Q_3 or a correct Q_1		
		Q ₃ = 421	A1	
	(ii)	their part (a)(i) – their Q_1 (clearly stated)	(M1)	
		IQR = (421 - 318 =) 103	A1	
				[4 ma
(b)	(Q ₃	$+1.5(IQR) =) 421 + (1.5 \times 103)$	(M1)	
	=57	75.5 e 498<575 5	R1	
	Neth	nerlands is not an outlier	A1	
Note	e: Th	e R1 is dependent on the (M1) . Do not award R0A1 .		
				[3 ma
(c)	not a	appropriate ("no" is sufficient)	A1	
	as r	is too close to zero / too weak a correlation	R1	[2 ma
(d)	(i)	6	Δ1	-
(9)	(1)			
	(11)	4.5	A1	
	(iii)	4.5	A1	70
				[3 ma
(e)	(i)	$r_s = 0.683 \ (0.682646)$	A2	
	(ii)	EITHER		
		there is a (positive) association between the population size and the score	A1	
		OR		
		there is a (positive) linear correlation between the ranks of the popul	ation size	е
		and the ranks of the scores (when compared with the PMCC of 0.24	9). A1	[3 ma
(f)		aring the top score by 20 does not change its rank so π is unchanged	D1	-
Note		cont "this would not alter the rank" or "Netherlande still ten rank" or sim		
NOte	: AC Co ex:	ndone any statement that clearly implies the ranks have not changed, ample: "The Netherlands still has the highest score "	for	

– 12 –

4. (a) (i)
$$\left(\frac{1}{2}A\hat{O}B = \right) \arccos\left(\frac{4}{4.5}\right) = 27.266...$$
 (M1)(A1)
 $A\hat{O}B = 54.532... \approx 54.5^{\circ} (0.951764... \approx 0.952 \text{ radians})$ A1

Note: Other methods may be seen; award *(M1)(A1)* for use of a correct trigonometric method to find an appropriate angle and then *A1* for the correct answer.

(ii) finding area of triangle **EITHER** area of triangle = $\frac{1}{2} \times 4.5^2 \times \sin(54.532...)$ (M1)

Note: Award *M1* for correct substitution into formula.

$$= 8.24621... \approx 8.25 \text{ m}^2$$
 (A1)

OR

 $AB = 2 \times \sqrt{4.5^2 - 4^2} = 4.1231...$

area triangle = $\frac{4.1231...\times 4}{2}$ (M1) = 8.24621... \approx 8.25 m² (A1)

$$= 8.24621... \approx 8.25 \text{ m}^2$$
 (A1

finding area of sector **EITHER**

area of sector =
$$\frac{54.532...}{360} \times \pi \times 4.5^2$$
 (M1)

$$=9.63661... \approx 9.64 \text{ m}^2$$
 (A1)

OR

area of sector = $\frac{1}{2} \times 0.9517641... \times 4.5^2$ (M1) = 9.63661... \approx 9.64 m² (A1)

THEN

area of segment = 9.63661... - 8.24621...= 1.39 m^2 (1.39040...)

A1 [8 marks]

continued...

Question 4 continued

(b) (i)
$$\pi \times 4.5^2$$
 (M1)
 $63.6 \text{ m}^2 (63.6172... \text{m}^2)$ A1
(ii) METHOD 1
 $4 \times 1.39040... (5.56160)$ (A1)
 $4 \times 1.39040... (5.56160)$ (A1)
 $58.1 \text{ m}^2 (58.055...)$ (A1)
 $= 58.1 \text{ m}^2 (58.055...) + 4 \left(\frac{35.4679}{360} \times \pi \times 4.5^2 \right)$ (M1)
 $= 32.9845...+25.0707$ (A1)
 $= 58.1 \text{ m}^2 (58.055...)$ A1

[5 marks]

(c) sketch of
$$\frac{dV}{dt}$$
 OR $\frac{dV}{dt} = 0.110363...$ OR attempt to find where $\frac{d^2V}{dt^2} = 0$ (M1)
 $t = 1$ hour A1
[2 marks]
[Total 15 marks]

5. (a) (let *T* be the number of passengers who arrive)

	$ (P(T) T \sim 0.00) $	$T > 72) = P(T \ge 73)$ OR $1 - P(T \le 72)$ B(74, 0.9) OR $n = 74$ 00379 (0.00379124)	(A1) (M1) A1	
Note	e: Us for	ing the distribution $B(74, 0.1)$, to work with the 10% that do not arrive the flight, here and throughout this question, is a valid approach.		
				[3 marks]
(b)	(i)	72×0.9 64.8	(M1) A1	
	(ii)	$n \times 0.9 = 72$ 80	(M1) A1	[4 marks]

(c) METHOD 1

EITHER

EITHER	
when selling 74	tickets

		$T \le 72$	<i>T</i> = 73	<i>T</i> = 74	
	Income minus	11100	10800	10500	
	compensation (I)				
	Probability	0.9962	0.003380	0.0004110	
	top row				A1A1
	bottom row				A1A1
No	te: Award A1A1 for entry and A1 for	or each row correct. or the remaining ent	Award A1 for one or ries correct.	correct	

 $E(I) = 11100 \times 0.9962... + 10800 \times 0.00338... + 10500 \times 0.000411 \approx 11099$ (M1)A1

OR

income is $74 \times 150 = 11100$	(A1)
expected compensation is 0.003380×300+0.0004110×600 (=1.26070)	(M1)A1A1

expected income when selling 74 tickets is $11100 - 1.26070$	(M1)
--	------

=11098.73.. (= \$11099)

THEN

income for 72 tickets $= 72 \times 150 = 10800$	(A1)
so expected gain $\approx 11099 - 10800 = 299	A1

continued...

A1

A1

Question 5 continued

METHOD 2

A1A1	for 74 tickets sold, let C be the compensation paid out $P(T = 73) = 0.00338014, P(T = 74) = 0.000411098$
(M1)A1A1	$E(C) = 0.003380 \times 300 + 0.0004110 \times 600 \ (=1.26070)$
1.26070)	extra expected revenue $= 300 - 1.01404 0.246658$ (300 -
(AI)(WI)	

Note: Award **A1** for the 300 and **M1** for the subtraction.

= \$299 (to the nearest dollar)

METHOD 3

let D be the change in income when selling 74 tickets.

-		1		T	-	
		$T \le 72$	T = 73	T = 74		
	Change in	300	0	-300	7	
	income					
				(4	Ā1)(A1)	
Note: Award A1 for one error, however award A1A1 if there is no explicit mention that $T = 73$ would result in $D = 0$ and the other two are correct.						
$P(T \le 73) = 0.9962, P(T = 74) = 0.000411098$					A1A1	
	$E(D) = 300 \times 0.9962 + 0 \times 0.003380 300 \times 0.0004110 $ (M1)				1)A1A1	
	= \$299				A1 18 marks	
					[Total 15 marks]	