

Markscheme

May 2022

Mathematics: applications and interpretation

Standard level

Paper 2

16 pages

)	(i) 0.58 (s)		A1	
	(ii) 0.7-0.4	2	(A1)(M1)	
ote	: Award A1 for	correct quartiles seen, <i>M1</i> for subtraction of their	quartiles.	
	0.28 s		A1	
				[4 marks
)	9 (people have	e reaction time ≤ 0.4)	(A1)	
	31 (people hav	e reaction time > 0.4)	A1	
				[2 marks
;)	$(90\% \times 40 =)$ 3	6 OR 4	(A1)	
	0.8 s		A1	
				[2 marks
)	(i) (<i>a</i> =) 6		A1	
	(ii) $(b =) 4$		A1	
				[2 marks
.)	$0.6 < t \le 0.8$		A1	
,				[1 mark
)	0.55 s		A2	
,				[2 marks]
)	the mean will in	ncrease	A1	
	because the in to a higher inte	correct reaction times are moving from a lower internet rval which will increase the numerator of the mear	erval n calculation <i>R1</i>	
	the median will	stay the same	A1	
	because the m being changed	edian or middle of the data is greater than both int	ervals <i>R1</i>	

[4 marks] Total [17 marks]

(M1)(A1)

-9-

 $115.5 = u_1 + (3-1) \times d \quad (115.5 = u_1 + 2d)$ $108 = u_1 + (8-1) \times d \quad (108 = u_1 + 7d)$

Note: Award M1 for attempting to use the arithmetic sequence term formula, A1 for both equations correct. Working for M1 and A1 can be found in parts (i) or (ii). (d = -1.5)1.5 (cups/day) A1 Note: Answer must be written as a positive value to award A1. OR $(d =) \frac{115.5 - 108}{5}$ (M1)(A1) Note: Award M1 for attempting a calculation using the difference between term 3 and term 8: A1 for a correct substitution. (d =) 1.5 (cups/day) A1 $(u_1 =) 118.5$ (cups) (ii) A1 [4 marks] attempting to substitute their values into the term formula for arithmetic (b) sequence equated to zero (M1) $0 = 118.5 + (n-1) \times (-1.5)$ A1 (n =) 80 days Note: Follow through from part (a) only if their answer is positive. [2 marks] $(t_5 =) 625 \times 1.064^{(5-1)}$ (c) (M1)(A1) **Note:** Award *M1* for attempting to use the geometric sequence term formula; A1 for a correct substitution \$801 A1 Note: The answer must be rounded to a whole number to award the final A1. [3 marks] continued...

2.

(a) (i)

EITHER

Question 2 continued

(4)	(i)	(S -) (\$) 8200	(820420)	Λ1
(u)	(1)	$(S_{10} -) (\phi) \delta S = 0$	(0394.39)	AI

(ii) **EITHER**

the total cost (of dog food)			R1
for 10 years beginning in 2021	OR	10 years before 2031	R1

OR

the total cost (of dog food)	R1
from 2021 to 2030 (inclusive) OR from 2021 to	(the start of) 2031 R1
	[3 marks]

(e) **EITHER**

According to the model, the cost of dog food per year will eventually be too high to keep a dog.

OR

The model does not necessarily consider changes in inflation rate.

OR

The model is appropriate as long as inflation increases at a similar rate. **OR**

The model does not account for changes in the amount of food the dog eats as it ages/becomes ill/stops growing.

OR

The model is appropriate since dog food bags can only be bought in discrete quantities.

R1

Note: Accept reasonable answers commenting on the appropriateness of the model for the specific scenario. There should be a reference to the given context. A reference to the geometric model must be clear: either "model" is mentioned specifically, or other mathematical terms such as "increasing" or "discrete quantities" are seen. Do not accept a contextual argument in isolation, e.g. "The dog will eventually die".

[1 mark] [13 marks]

(a)	$\left(\frac{2+6}{2}, \frac{2+0}{2}\right)$	(M1)	
	(4,1)	A1	
Note	: Award A0 if parentheses are omitted in the final answer.		
L			[2 marks]
(b)	attempt to substitute values into gradient formula	(M1)	
	$\left(\frac{0-2}{6-2}\right) = -\frac{1}{2}$	(A1)	
	(0-2) 2 therefore the gradient of perpendicular bisector is 2	(M1)	
	so $y-1=2(x-4)$ $(y=2x-7)$	A1	
			[4 marks]
(c)	identifying the correct equations to use: y = 2 - x and $y = 2x - 7$	(M1)	
	evidence of solving their correct equations or of finding intersection po	oint graphicall	У
	(3, -1)	(IVII) A1	
Note	:Accept an answer expressed as " $x = 3$, $y = -1$ ".		
			[3 marks]
(d)	attempt to use distance formula	(M1)	
	$YZ = \sqrt{(7 - (-1))^2 + (7 - 3)^2}$		
	$=\sqrt{80} \left(4\sqrt{5}\right)$	A1	
			[2 marks]
(e)	METHOD 1 (cosine rule)		
	length of XZ is $\sqrt{80} (4\sqrt{5}, 8.94427)$	(A1)	
Note	e: Accept 8.94 and 8.9.		
	attempt to substitute into cosine rule	(M1)	
	$\cos X\hat{Y}Z = \frac{80 + 32 - 80}{5}$ (= 0.316227)	(A1)	
	$2 \times \sqrt{80}\sqrt{32}$		
Note	: Award A1 for correct substitution of XZ, YZ, $\sqrt{32}$ values in the cos Exact values do not need to be used in the substitution.	rule.	
	$(X\hat{Y}Z =)$ 71.6° (71.5650°)	A1	
Note	: Last A1 mark may be lost if prematurely rounded values of XZ, YZ and/or XY are used.		

continued...

3.

Question 3 continued

METHOD 2 (splitting isosceles triangle in half) length of XZ is $\sqrt{80}$ (4 $\sqrt{5}$, 8.94427...) (A1) Note: Accept 8.94 and 8.9. required angle is $\cos^{-1}\left(\frac{\sqrt{32}}{2\sqrt{80}}\right)$ (M1)(A1) **Note:** Award **A1** for correct substitution of XZ (or YZ), $\frac{\sqrt{32}}{2}$ values in the cos rule. Exact values do not need to be used in the substitution. $(X\hat{Y}Z =)$ 71.6° (71.5650°) A1 Note: Last A1 mark may be lost if prematurely rounded values of XZ, YZ and/or XY are used. [4 marks] (area =) $\frac{1}{2}\sqrt{80}\sqrt{32}\sin 71.5650...$ OR (area =) $\frac{1}{2}\sqrt{32}\sqrt{72}$ (f) (M1) $= 24 \text{ km}^2$ A1 [2 marks] Any sensible answer such as: (g) There might be factors other than proximity which influence shopping choices. A larger area does not necessarily result in an increase in population.

The supermarkets might be specialized / have a particular clientele who visit even if other shops are closer. Transport links might not be represented by Euclidean distances. etc.

R1 [1 mark] Total [18 marks]

(a)	(i)	an attempt to find the amplitude $\frac{61.8}{2}$ OR $\frac{64.5-2.7}{2}$	(M1)	
		(a =) 30.9 m	A1	
Not	e: Ac	cept an answer of $(a =) -30.9 \text{ m}$.		
	(ii)	$(\text{period} = \frac{60}{1.5} =) 40 \text{ (s)}$	(A1)	
		$((b=)\frac{360^{\circ}}{40})$		
		(b =) 9	A1	
Not	e:Acc	ept an answer of $(b =) -9$.		
	(iii)	attempt to find d	(M1)	
		$(d =) 30.9 + 2.7 \text{ OR } \frac{64.5 + 2.7}{2}$		
		(d =) 33.6 m	A1	[6 mar
(b)	12×	1.5 OR $\frac{12 \times 60}{40}$	(M1)	
	18 (revolutions per ride)	A1	[2 mar
(c)	(i)	$0 \le t \le 720$	A1	
	(ii)	$2.7 \le h \le 64.5$	A1A1	
Not	e: Aw rar	vard A1 for correct endpoints of domain and A1 for correct endpoints nge. Award A1 for correct direction of both inequalities.	of	
				[3 mar
(d)	grap	bh of $h(t)$ and $y = 16.7$ OR $h(t) = 16.7$	(M1)	
	6.31 27.4	596 and 33.6840 (s) (27.3680)	(A1) A1	
				[3 mar

– 13 –

continued...

Question 4 continued

(e)	(i)	d	A1
	(ii)	EITHER $d + 30.9 = 65.2$	(A1)
		OR $65.2 - (61.8 + 2.7) = 0.7$	(A1)
		OR 3.4 (new platform height)	(A1)
		THEN (<i>d</i> =) 34.3 m	A1 [3 marks] Total [17 marks]

5.	(a)	attempt to expand given expression $C = \frac{xk^2}{3x^3} - \frac{3x^3}{3x^3}$	(M1)	
		$\frac{10}{dx} = \frac{k^2}{10} - \frac{9x^2}{1000}$	M1A1	
	Note	: Award <i>M1</i> for power rule correctly applied to at least one term and <i>A1</i> for correct answer.]	[3 marks]
	(b)	equating their $\frac{dC}{dC}$ to zero	(M1)	[o markoj
	(5)	$\frac{k^2}{10} - \frac{9x^2}{1000} = 0$	()	
		$x^{2} = \frac{100k^{2}}{9}$		
		$x = \frac{10k}{3}$	(A1)	
		substituting their x back into given expression $C_{\text{max}} = \frac{10k}{30} \left(k^2 - \frac{300k^2}{900} \right)$	(M1)	
		$C_{\max} = \frac{2k^3}{9} \left(0.222k^3 \right)$	A1	[4 marks]
	(c)	(i) substituting 20 into given expression and equating to 426 $426 = \frac{20}{10} \left(k^2 - \frac{3}{100} (20)^2 \right)$	M1	[
		k = 15	A1	
		(ii) 50	A1	[3 marks]

continued...

Question 5 continued

