

Markscheme

May 2022

Mathematics: applications and interpretation

Standard level

Paper 1

16 pages

1. height of triangle at roof =
$$1.35 - 0.9 = 0.45$$
 (A1)

 Note: Award Af for 0.45 (height of triangle) seen on the diagram.
 (A1)

 slant height = $\sqrt{0.45^2 + 0.45^2}$
 OR $sin (45^\circ) = \frac{0.45}{slant height}$
 (M1)

 = $\sqrt{0.405}$ (0.636396..., $0.45\sqrt{2}$)
 A1

 Note: If using $sin (45^\circ) = \frac{0.45}{slant height}$ then (A1) for angle of 45° . (M1) for a correct trig statement.
 A1

 area of one rectangle on roof = $\sqrt{0.405} \times 0.9$ (= 0.572756...)
 M1

 area painted = $(2 \times \sqrt{0.405} \times 0.9 = 2 \times 0.572756...)$
 A1

 1.15 m² (1.14551... m², $0.81\sqrt{2}$ m²)
 A1

 [Total 5 marks]
 [Total 5 marks]

 2. (a) $\sqrt{3.2^2 + 4.5^2 + 5.8^2}$
 (M1)

 = 8.01 (8.00812...) m
 OR $cos^{-1} (\frac{5.52177...}{8.00812...})$ OR $tan^{-1} (\frac{5.8}{5.52177...})$ (M1)

 46.4^\circ (46.4077...)
 A1

 [2 marks]
 [Total 4 marks]

 (b) $-4.8t^2 + 21t + 1.2 = 0$
 (M1)

 (t) $-4.43^\circ s$ (4.431415...s)
 A1

 [2 marks]
 [C) $0 \le t \le 4.43$ OR [0, 4.43]
 A141

 Note: If both values for t are seen do not award the A1 mark unless the negative is explicitly excluded.
 [2 marks]

 (c) $0 \le t \le 4.43$ OR [0, 4.43]
 A141

 Note: Award A1 for correct endpoints and A1 for expressing answer wi

- 8 -

4.	(a) midpoint (1, 2.5)	A1
4.		AI
	$m_{AB} = \frac{6 - (-1)}{8 - (-6)} = \frac{1}{2}$	(M1)A1
	Note: Accept equivalent gradient statements including using midpoint.	
	$m_{\perp} = -2$	M1
	Note: Award <i>M1</i> for finding the negative reciprocal of their gradient.	
	$y-2.5 = -2(x-1)$ OR $y = -2x + \frac{9}{2}$ OR $4x + 2y - 9 = 0$	A1
	_	[5 marks]
	(b) substituting $x = -6$ into their equation from part (a)	(M1)
	$y = -2(-6) + \frac{9}{2}$	
	y = 16.5	A1
	Note: Award <i>M1A0</i> for $(-6, 16.5)$ as their final answer.	
		[2 marks] [Total 7 marks]
5.	(a) $x + y + z = 600$	A1
	15x + 10y + 12z = 7816	A1
	x = 2y	A1
	Note: Condone other labelling if clear, e.g. <i>a</i> (adult), <i>c</i> (child) and <i>s</i> (student). Accept equivalent, distinct equations e.g. $2y + y + z = 600$.	

[3 marks]

(b) $x = 308, y = 154, z = 138$	1A1
Note: Award A1 for all three correct values seen, A1 for correctly labelled as x, y of Accept answers written in words: e.g. 308 adult tickets.	r <i>z</i> .
	[2 marks] [Total 5 marks]

6. (a)
$$\frac{1}{2}(0.6+0+2(1.2+1.2))$$
 (A1)(M1)
Note: Award A1 for evidence of $h = 1$, M1 for a correct substitution into trapezoidal rule
(allow for an incorrect h only). The zero can be omitted in the working.
2.7 m² A1
[3 marks]
(b) $\int_{-1}^{2} \frac{-x^{3} - 3x^{2} + 4x + 12}{10} dx$ OR $\int_{-1}^{2} f(x) dx$ (M1)
Note: Award M1 for using definite integration with correct limits.
2.925 m² A1
Note: Question requires exact answer, do not award final A1 for 2.93.
(c) $9 - 2.925$ (M1)
Note: Award M1 for 9 seen as part of a subtraction.
 $= 6.08 \text{ m}^{2} (6.075)$ A1
[2 marks]

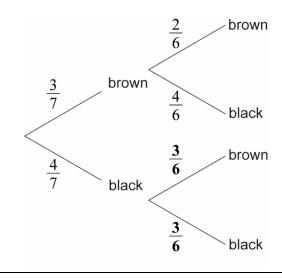
[Total 7 marks]

7.	(a) I	H_0 : The die is fair OR P(any number) = $\frac{1}{6}$ OR probabilities are equal		
	Ι	H_1 : The die is not fair OR P(any number) $\neq \frac{1}{6}$ OR probabilities are not equal	A1	[1 mark]
	(b)	5	A1	[1 mark]
	(c)	10	A1	[1 mark]
	(d)	(<i>p</i> -value =) 0.287 (0.28724163)	A2	[2 marks]
	(e)	0.287 > 0.05	R1	
		EITHER Insufficient evidence to reject the null hypothesis OR	A1	
		Insufficient evidence to reject that the die is fair	A1	
	Note	: Do not award R0A1 . Condone " <i>accept</i> the null hypothesis" or "the die is fai Their conclusion must be consistent with their <i>p</i> -value and their hypothesis.		
			[Tota	[2 marks] I 7 marks]

(a) 50%	A1
Note: Do not accept 0.5 or $\frac{1}{2}$.	
	[1 mark]
(b) 0.0478 (0.0477903, 4.78%)	A2 [2 marks]
(c) $P(X < k) = 0.98$ OR $P(X > k) = 0.02$	(M1)
Note: Award <i>(M1)</i> for a sketch with correct region identified.	

506 g (506.161...)

8.


A2 [3 marks] [Total 6 marks]

– 11 –

(a) $f'(x) = -2x^{-2} + 6x$ OR $f'(x) = -\frac{2}{x^2} + 6x$ 9. A1(M1)A1 **Note:** Award **A1** for 6x seen, and **(M1)** for expressing $\frac{1}{r}$ as x^{-1} (this can be implied from either x^{-2} or $\frac{2}{x^2}$ seen in their final answer), **A1** for $-\frac{2}{x^2}$. Award at most A1(M1)A0 if any additional terms are seen. [3 marks] finding gradient at x = 1(b) $\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=1} = 4$ A1 finding the perpendicular gradient М1 $m_{\perp} = -\frac{1}{4}$ $2 = -\frac{1}{4}(1) + c$ **OR** $y - 2 = -\frac{1}{4}(x - 1)$ М1 **Note:** Award **M1** for correctly substituting x = 1 and y = 2 and their m_{\perp} . x + 4v - 9 = 0A1

Note: Do not award the final **A1** if the answer is not in the required form. Accept integer multiples of the equation.

[4 marks] [Total 7 marks] **10**. (a)

Note: Award A1 for both missing probabilities correct.

[1 mark]

A1

(b)	multiplying along branches and then adding outcomes $\frac{3}{7} \times \frac{2}{6} + \frac{4}{7} \times \frac{3}{6}$	(M1)	
	$=\frac{18}{42}\left(=\frac{3}{7}\approx0.429~(42.9\%)\right)$	A1	[2 marks]
(c)	use of conditional probability formula	М1	

 $\frac{\left(\frac{3}{7} \times \frac{2}{6}\right)}{\left(\frac{3}{7}\right)}$ $= \frac{6}{18} \left(=\frac{1}{3}\right) \left(\frac{252}{756}, 0.333, 33.3\%\right)$ A1

[3 marks] [Total 6 marks]

11.	(a)	$log_{10} 100 = a - 3$ a = 5	(M1)	A1 [2 marks]
	(b)	EITHER $N = 10^{5-M}$ $= \frac{10^5}{10^M} \left(= \frac{100000}{10^M} \right)$	(M1)	
		\mathbf{OR} $100 = \frac{b}{10^3}$	(M1)	
		THEN $b = 100000 \ (=10^5)$	A1	[2 marks]
	(c)	$0.001 < N < 100000 \ (10^{-3} < N < 10^5)$	A1A1	
	Note	e: Award A1 for correct endpoints and A1 for correct inequalities/interval n	otation.]
	(d)	$N = \frac{10^5}{10^{7.2}} \ (= 0.0063095)$ length of time = $\frac{1}{0.0063095} = 10^{2.2}$	(M1)	[2 marks]

= 158 years

A1 [2 marks] [Total 8 marks]

12.	(a)	METHOD 1 (when $t = 2$)	
		$\frac{dP}{dt} = -4 \mathbf{OR} \frac{dP}{dt} < 0 \text{ (equivalent in words) } \mathbf{OR} 3(2)^2 - 8(2) = -4$	-4 M1
		therefore P is decreasing	A1
		METHOD 2 sketch with $t = 2$ indicated in 4th quadrant OR <i>t</i> -intercepts identified therefore <i>P</i> is decreasing	d M1 A1 [2 marks]
	(b)	$(P(t)=) t^3 - 4t^2 (+c)$	A1A1
		$4 = 1^3 - 4(1)^2 + c$	(M1)
	Note	e: Award M1 for substituting $(1, 4)$ into their equation with $+c$ seen.	
		c = 7 $P(t) = t^3 - 4t^2 + 7$	A1 [4 marks] [Total 6 marks]
13.	(a)	use of geometric sequence with $r = 0.85$	M1
		EITHER $(0.85)^6(1.8)$ OR 0.678869 OR $(0.85)^5(1.53)$ = 0.68 m	A1
		=68 cm	AG
		OR $(0.85)^6(180)$ OR $(0.85)^5(153)$	A1
		(0.83)(180) UR $(0.83)(133)= 68 cm$	AG
			[2 marks]

continued...

Question 13 continued

(b)	EITHER $(0.85)^n(1.8) > 0.1$ OR $(0.85)^{n-1}(1.53) > 0.1$	(M1)	
Note:	If 1.8 m (or 180 cm) is used then (M1) only awarded for use of n in (II 1.53 m (or 153 cm) is used then (M1) only awarded for use of $n-1$		
	17	A1	
	OR		
	$(0.85)^{17}(1.8) = 0.114$ m and $(0.85)^{18}(1.8) = 0.0966$ m 17	(M1) A1	
		AI	
	OR solving $(0.85)^n (1.8) = 0.1$ to find $n = 17.8$	(M1)	
	17	(////) A1	
Note:	Evidence of solving may be a graph OR the "solver" function OR use		
	to solve the equation. Working may use cm.		
			[2 marks
	EITHER		
	distance (in one direction) travelled between first and fourth bounce		
	$=\frac{(1.8\times0.85)(1-0.85^3)}{1-0.85} \ (=3.935925)$	(A1)	
	1-0.85 recognizing distances are travelled twice except first distance	(M1)	
	1.8+2(3.935925)	()	
	= 9.67 m (9.67185 m)	A1	
	OR		
	distance (in one direction) travelled between drop and fourth bounce		
	$=\frac{(1.8)(1-0.85^4)}{1-0.85} \ (=5.735925)$	(A1)	
	recognizing distances are travelled twice except first distance	(M1)	
	2(5.735925)-1.8	()	
	=9.67 m (9.67185 m)	A1	
	OR		
	distance (in one direction) travelled between first and fourth bounce		
	$(0.85)(1.8) + (0.85)^{2}(1.8) + (0.85)^{3}(1.8) (=3.935925)$	(A1)	
	recognizing distances are travelled twice except first distance	(M1)	
	$1.8 + 2(0.85)(1.8) + 2(0.85)^{2}(1.8) + 2(0.85)^{3}(1.8)$		
	=9.67 m (9.67185 m)	A1	

[3 marks] [Total 7 marks]