Name:

Result:

1.

Consider a function $f(x) = \frac{2x+4}{x+3}$.

(a) The graph of y = f(x) can be obtained from the graph of $y = \frac{1}{x}$ using a sequence of transformations. Describe these transformations.

(b) Sketch the graph of y = f(x). Clearly indicate the equations of asymptotes and any axes intercepts.

(c) On the same diagram sketch the graph of y = |2x + 1|.

(d) Solve the inequality $\frac{2x+4}{x+3} \ge |2x+1|$

(9 points)

(7 points)

2.

Consider a function $f(x) = x^2 + 2x + 5$, where $x \in \mathbb{R}$.

(a) Let $g(x) = \sqrt{8-x}$. Find the domain of $(g \circ f)(x)$.

(b) Let $h(x) = 2^{x-5}$. Find the range of $(h \circ f)(x)$.

(c) Find the maximum possible domain, in the form $x \leq a$, so the f(x) has an inverse function and find this inverse function.

3.

(21 points)

Solve the following equations and inequalities. In part (d) give your answer in the form $\frac{\ln p}{\ln q}$, where $p, q \in \mathbb{Q}$.

(a) $|3x - 2| \le |x + 1|$

(b)
$$|x-2| + |x+1| = x+2$$

(c) $3^{2x+1} + 4 = 13 \cdot 3^x$

(d) $5^{x-2} = 3^{2x+1}$

(e)
$$\left(\frac{1}{4}\right)^{x+2} < (\sqrt[3]{4})^{6x-9}$$

(f)
$$\log_2(x-2) + \log_2(x-3) = 2 + \log_2 3$$

(g) $2\log_4 x = 2\log_x 4 + 3$

4.

(7 points)

T denotes the temperature, measured in $^{\circ}C$, of a bowl of soup in a fridge after t minutes. It is given that the difference between T and 4 $^{\circ}C$ decreases by 30% every 5 minutes. Initially the temperature of the soup was 50 $^{\circ}C$.

- (a) Find the formula for T(t).
- (b) Sketch the graph of T(t).
- (c) Interpret the 4 $^{\circ}C$ given in the question.
- (d) Rearrange your answer to part (a) to find t as a function of T.

(6 points)

5.

Consider the function $f(x) = |2^{2-|x|} - 1|$.

- (a) Sketch the graph of y = f(x).
- (b) Explain why f does not have an inverse function.
- (c) The equation f(x) = k has exactly two solutions. Find all possible values of k.

