Name: Result:

1.

(5 points)(5 points) The normal to the curve $y = a\sqrt{x} + \frac{b}{x}$ at x = 1 is given by the equation 2x - y + 3 = 0. Find the values of a and b.

2.

(5 points) Let $f(x) = \frac{1}{3}x^3 + ax^2 + bx - 2$. The graph of f(x) has a local maximum at x = -4 and a local minimum at x = 1.

(a) Find the values of
$$a$$
 and b . [3]

(b) Find the x-coordinate of the point of inflexion of the graph of f(x). [2]

3.

(4 points) The following table shows value of f(x), g(x), f'(x) and g'(x) for various values of x:

x	f(x)	g(x)	f'(x)	g'(x)
0	2	1	2	5
1	3	4	1	2
2	3	1	-1	-4
3	1	0	-1	-1
4	0	2	-5	1

Let $h(x) = (f \circ g)(x)$. Find the equation of the normal to the graph of h(x) at x = 2. Write your answer in the form Ax + By + C = 0, where $A, B, C \in \mathbb{Z}$.

4.

(5 points)

Consider the curve $y = \frac{1}{x}$ with x > 0. The tangent to this curve at the point where x = a intersects the axes at points A and B. Find the area of the triangle OAB where O is the origin.

(a) Find f'(x) in terms of a.

(13 points)

5.

Consider the function $f(x) = \sqrt{x + \frac{1}{x - a}}$, where x > a and a > 0.

[3]

- (b) The function is increasing for x > 3. Find a. [3]
- (c) State the coordinates of the minimum of the graph of f(x). [1]

(d) Using the graph of f'(x), or otherwise, find the exact coordinates of the point of inflexion of the graph of f(x). [4]

(e) Sketch the graph of f(x) indicating all the features you've found. [2]