Binomial theorem - revision questions (TL) [53 marks]

1. [Maximum mark: 6] 23N.1.AHL.TZ1.5

The binomial expansion of $\left(1+kx\right)^n$ is given by

$$1+12x+28k^2x^2+\ldots+k^nx^n$$
 where $n\in\mathbb{Z}^+$ and $k\in\mathbb{Q}$.

Find the value of n and the value of k.

[6]

Markscheme

attempt to apply binomial expansion (M1)

$$(1+kx)^n=1+^nC_1kx+^nC_2k^2x^2+\dots$$
 OR $^nC_1k=12$ OR $^nC_2=28$

$$nk = 12$$
 (A1)

$$rac{n(n-1)}{2} = 28 \; ext{OR} \; rac{n!}{(n-2)!2!} = 28$$
 (A1)

$$n^2 - n - 56 = 0 \text{ OR } n(n-1) = 56$$

valid attempt to solve (M1)

(n-8)(n+7)=0 OR 8(8-1)=56 OR finding correct value in Pascal's triangle

$$\Rightarrow n=8$$
 A1

$$\Rightarrow k = rac{3}{2}$$
 A1

Note: If candidate finds n=8 with no working shown, award $\emph{M1A0A0M1A1A0}$.

If candidate finds n=8 and $k=\frac{3}{2}$ with no working shown, award $\emph{M1A0A0M1A1A1}$.

[6 marks]

2. [Maximum mark: 7]

23M.2.SL.TZ1.6

The coefficient of x^6 in the expansion of $\left(ax^3+b\right)^8$ is 448.

The coefficient of x^6 in the expansion of $\left(ax^3+b\right)^{10}$ is 2880.

Find the value of a and the value of b, where $a\,,\,b>0$.

[7]

Markscheme

product of a binomial coefficient, a power of ax^3 and a power of b seen (M1) evidence of correct term chosen

for
$$n=8$$
 : $r=2$ (or $r=6$) OR for $n=10$: $r=2$ (or $r=8$) (A1)

correct equations (may include powers of x) **A1A1**

$$_8C_2a^2b^6=448\ \left(28a^2b^6=448\Rightarrow a^2b^6=16
ight)$$
, $_{10}C_2a^2b^8=2880\ \left(45a^2b^8=2880\Rightarrow a^2b^8=64
ight)$

attempt to solve their system in a and b algebraically or graphically (M1)

$$b=2$$
 ; $a=rac{1}{2}$ A1A1

Note: Award a maximum of *(M1)(A1)A1A1(M1)A1A0* for $b=\pm 2$ and/or $a=\pm \frac{1}{2}$.

[7 marks]

3. [Maximum mark: 6]

22N.2.SL.TZ0.6

Consider the expansion of $\frac{(ax+1)^9}{21x^2}$, where $a\neq 0$. The coefficient of the term in x^4 is $\frac{8}{7}a^5$.

Find the value of a. [6]

Markscheme

Note: Do not award any marks if there is clear evidence of adding instead of multiplying, for example $^9C_r+(ax)^{9-r}+(1)^r$.

valid approach for expansion (must be the product of a binomial coefficient with n=9 and a power of ax) $\,$ (M1)

$${}^9C_r(ax)^{9-r}(1)^r$$
 or ${}^9C_{9-r}(ax)^r(1)^{9-r}$ or ${}^9C_0(ax)^0(1)^9 + {}^9C_1(ax)^1(1)^8 + \dots$

recognizing that the term in x^6 is needed (M1)

$$rac{ ext{Term in } x^6}{21x^2} = kx^4$$
 or $r=6$ or $r=3$ or $9-r=6$

correct term or coefficient in binomial expansion (seen anywhere) (A1)

$$^9C_6(ax)^6(1)^3$$
 OR $^9C_3a^6x^6$ OR $84ig(a^6x^6ig)(1)$ OR $84a^6$

EITHER

correct term in x^4 or coefficient (may be seen in equation) (A1)

$$rac{{}^9C_6}{21}a^6x^4$$
 OR $4a^6x^4$ OR $4a^6$

Set their term in x^4 or coefficient of x^4 equal to $\frac{8}{7}a^5x^4$ or $\frac{8}{7}a^5$ (do not accept other powers of x) (M1)

$$rac{^9C_3}{21}a^6x^4 = rac{8}{7}a^5x^4$$
 or $4a^6 = rac{8}{7}a^5$

OR

correct term in x^6 or coefficient of x^6 (may be seen in equation) (A1)

$$84a^6x^6$$
 or $84a^6$

set their term in x^6 or coefficient of x^6 equal to $24a^5x^6$ or $24a^5$ (do not accept other powers of x) (M1)

$$84a^6x^6=24a^5x^6$$
 OR $84a=24$

THEN

$$a=rac{2}{7}pprox 0.\,286\,(0.\,285714\ldots)$$
 A1

Note: Award A0 for the final mark for $a=\frac{2}{7}$ and a=0.

[6 marks]

Consider the binomial expansion

$$(x+1)^7=x^7+ax^6+bx^5+35x^4+\ldots+1$$
 where $x
eq 0$ and $a,\ b\in\mathbb{Z}^+$

.

(a) Show that b=21.

[2]

Markscheme

EITHER

recognises the required term (or coefficient) in the expansion (M1)

$$bx^5={}_7C_2x^51^2$$
 or $b={}_7C_2$ or ${}_7C_5$

$$b = \frac{7!}{2!5!} \left(= \frac{7!}{2!(7-2)!} \right)$$

correct working A1

$$\frac{7\times6\times5\times4\times3\times2\times1}{2\times1\times5\times4\times3\times2\times1} \ \ \text{OR} \ \ \frac{7\times6}{2!} \ \ \text{OR} \ \ \frac{42}{2}$$

OR

lists terms from row 7 of Pascal's triangle (M1)

$$1, 7, 21, \ldots$$

THEN

$$b=21$$
 AG

[2 marks]

(b) The third term in the expansion is the mean of the second term and the fourth term in the expansion.

Find the possible values of x.

Markscheme

$$a=7$$
 (A1)

correct equation A1

$$21x^5 = rac{ax^6 + 35x^4}{2}$$
 or $21x^5 = rac{7x^6 + 35x^4}{2}$

correct quadratic equation A1

$$7x^2-42x+35=0$$
 OR $x^2-6x+5=0$ (or equivalent)

valid attempt to solve **their** quadratic (M1)

$$(x-1)(x-5)=0$$
 or $x=rac{6\pm\sqrt{(-6)^2-4(1)(5)}}{2(1)}$

$$x=1, \ x=5$$
 A1

Note: Award final $\emph{A0}$ for obtaining $x=0,\;x=1,\;x=5.$

[5 marks]

5. [Maximum mark: 5]

22M.1.AHL.TZ1.6

Consider the expansion of $\left(8x^3-\frac{1}{2x}\right)^n$ where $n\in\mathbb{Z}^+$. Determine all possible values of n for which the expansion has a non-zero constant term.

[5]

Markscheme

EITHER

attempt to obtain the general term of the expansion

$$T_{r+1} = {}_n C_r ig(8x^3 ig)^{n-r} ig(-rac{1}{2x} ig)^r$$
 or $T_{r+1} = {}_n C_{n-r} ig(8x^3 ig)^r ig(-rac{1}{2x} ig)^{n-r}$ (M1)

OR

recognize power of x starts at 3n and goes down by 4 each time (M1)

THEN

recognizing the constant term when the power of \boldsymbol{x} is zero (or equivalent) (M1)

$$r=rac{3n}{4}$$
 or $n=rac{4}{3}r$ or $3n-4r=0$ OR $3r-\left(n-r
ight)=0$ (or equivalent)

r is a multiple of $3\ (r=3,6,9,\ldots)$ or one correct value of n (seen anywhere) (A1)

$$n=4k,\;k\in\mathbb{Z}^+$$
 at

Note: Accept n is a (positive) multiple of 4 or $n=4,8,12,\ldots$ Do not accept n=4,8,12

Note: Award full marks for a correct answer using trial and error approach showing $n=4,8,12,\ldots$ and for recognizing that this pattern continues.

6. [Maximum mark: 5]

21M.1.SL.TZ2.4

In the expansion of $(x+k)^7$, where $k\in\mathbb{R}$, the coefficient of the term in x^5 is 63 .

Find the possible values of k.

[5]

Markscheme

EITHER

attempt to use the binomial expansion of $\left(x+k\right)^{7}$ (M1)

$$^7C_0x^7k^0+^7C_1x^6k^1+^7C_2x^5k^2+\dots$$
 (or $^7C_0k^7x^0+^7C_1k^5x^1+^7C_2k^5x^2+\dots$)

identifying the correct term $^7C_2x^5k^2$ (or $^7C_5k^2x^5$) (A1)

OR

attempt to use the general term ${}^7C_rx^rk^{7-r}$ (or ${}^7C_rk^rx^{7-r}$) (M1)

$$r=2$$
 (or $r=5$) (A1)

THEN

$$^7C_2=21 \; {
m (or} \, ^7C_5=21 \, {
m (seen \, anywhere)}$$
 (A1)

$$21x^5k^2=63x^5 \ (21k^2=63 \ , \ k^2=3)$$
 A1

$$k=\pm\sqrt{3}$$
 A1

Note: If working shown, award M1A1A1A1A0 for $k=\sqrt{3}$.

[5 marks]

7. [Maximum mark: 5]

21M.2.SL.TZ1.6

Consider the expansion of $(3+x^2)^{n+1}$, where $n\in\mathbb{Z}^+$.

Given that the coefficient of x^4 is 20412, find the value of n.

[5]

Markscheme

METHOD 1

product of a binomial coefficient, a power of 3 (and a power of x^2) seen (M1) evidence of correct term chosen (A1)

$$^{n+1}C_2 imes 3^{n+1-2} imes \left(x^2
ight)^2\left(=rac{n(n+1)}{2} imes 3^{n-1} imes x^4
ight)$$
 or $n-r=1$

equating their coefficient to 20412 or their term to $20412x^4$ (M1)

EITHER

$$^{_{n+1}}C_2 imes 3^{n-1} = 20412$$
 (A1)

OR

$$^{r+2}C_r imes 3^r=20412\Rightarrow r=6$$
 (A1)

THEN

$$n=7$$
 A1

METHOD 2

$$3^{n+1}\Big(1+rac{x^2}{3}\Big)^{n+1}$$

product of a binomial coefficient, and a power of $\frac{x^2}{3}$ **OR** $\frac{1}{3}$ seen (M1) evidence of correct term chosen (A1)

$$3^{n+1} imes rac{n(n+1)}{2!} imes \left(rac{x^2}{3}
ight)^2\left(=rac{3^{n-1}}{2}n(n+1)x^4
ight)$$

equating their coefficient to $20412\,\mathrm{or}$ their term to $20412x^4$ (M1)

$$3^{n-1} imes rac{n(n+1)}{2} = 20412$$
 (A1)

$$n=7$$
 A1

[5 marks]

Consider the expansion of $\left(3x^2-rac{k}{x}
ight)^9$, where k>0 .

The coefficient of the term in x^6 is 6048. Find the value of k.

[6]

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

valid approach for expansion (must have correct substitution for parameters, but accept an incorrect value for r). (M1)

$$\binom{9}{r} \left(3x^2\right)^{9-r} \left(-\frac{k}{x}\right)^r, \ \left(3x^2\right)^9 + \binom{9}{1} \left(3x^2\right)^8 \left(-\frac{k}{x}\right)^1 + \binom{9}{2} \left(3x^2\right)^7 \left(-\frac{k}{x}\right)^2 + \dots$$

valid attempt to identify correct term (M1)

eg
$$2(9-r)-r=6$$
 , $(x^2)^r(x^{-1})^{9-r}=x^6$

identifying correct term (may be indicated in expansion) (A1)

eg
$$r = 4, r = 5$$

correct term or coefficient in binominal expansion (A1)

eg
$$\binom{9}{4} \left(3x^2\right)^5 \left(-\frac{k}{x}\right)^4$$
, $126 \left(243x^{10}\right) \left(\frac{k^4}{x^4}\right)$, $30618k^4$

correct equation in k (A1)

eg
$$\binom{9}{4}(243)ig(k^4ig)x^6=6048x^6\,,\ 30618k^4=6048$$

$$k=rac{2}{3}$$
 (exact) $0.\,667$ A1 N3

Note: Do not award *A1* if additional answers given.

9. [Maximum mark: 6]

20N.2.AHL.TZ0.H_4

Find the term independent of x in the expansion of $\frac{1}{x^3}\left(\frac{1}{3x^2}-\frac{x}{2}\right)^9$.

[6]

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

use of Binomial expansion to find a term in either

$$\left(rac{1}{3x^2}-rac{x}{2}
ight)^9,\; \left(rac{1}{3x^{7/3}}-rac{x^{2/3}}{2}
ight)^9,\; \left(rac{1}{3}-rac{x^3}{2}
ight)^9,\; \left(rac{1}{3x^3}-rac{1}{2}
ight)^9$$
 or $\left(2-3x^3
ight)^9$ (M1)(A1)

Note: Award *M1* for a product of three terms including a binomial coefficient and powers of the two terms, and *A1* for a correct expression of a term in the expansion.

finding the powers required to be 2 and 7 (M1)(A1)

constant term is
$${}_9C_2 imes \left(rac{1}{3}
ight)^2 imes \left(-rac{1}{2}
ight)^7$$
 (M1)

Note: Ignore all x's in student's expression.

therefore term independent of x is $-\frac{1}{32}~(=-0.03125)~$ A1

[6 marks]