Functions - review (TL) [170 marks]

- 1. [Maximum mark: 5] SPM.1.SL.TZ0.5 The functions f and g are defined such that $f(x)=rac{x+3}{4}$ and g(x)=8x+5.
 - (a) Show that $\left(g\circ f
 ight)\left(x
 ight)=2x+11.$ [2]

(b) Given that
$$\left(g\circ f
ight)^{-1}\left(a
ight)=4$$
, find the value of a . [3]

2. [Maximum mark: 6] EXN.1.SL.TZ0.5 The functions f and g are defined for $x\in\mathbb{R}$ by f(x)=x-2 and g(x)=ax+b, where $a,\,b\in\mathbb{R}.$

Given that $(f \circ g)(2) = -3$ and $(g \circ f)(1) = 5$, find the value of a and the value of b. [6]

3. [Maximum mark: 14]

EXN.1.SL.TZ0.8

The following diagram shows the graph of $y=-1-\sqrt{x+3}$ for $x\geq -3.$

(a) Describe a sequence of transformations that transforms the graph of $y = \sqrt{x}$ for $x \ge 0$ to the graph of $y = -1 - \sqrt{x+3}$ for $x \ge -3$. [3]

A function f is defined by $f(x)=-1-\sqrt{x+3}$ for $x\geq -3.$

(b) State the range of f. [1]

(c) Find an expression for
$$f^{-1}(x)$$
, stating its domain. [5]

(d) Find the coordinates of the point(s) where the graphs of y = f(x) and $y = f^{-1}(x)$ intersect. [5]

4. [Maximum mark: 17]

The temperature T ° C of water t minutes after being poured into a cup can be modelled by $T = T_0 e^{-kt}$ where $t \ge 0$ and T_0 , k are positive constants.

The water is initially boiling at $100~{}^\circ\mathrm{C}.$ When t=10, the temperature of the water is $70~{}^\circ\mathrm{C}.$

(a)	Show that $T_0=100.$	[1]
(b)	Show that $k=rac{1}{10}{ m ln}rac{10}{7}.$	[3]
(c)	Find the temperature of the water when $t=15.$	[2]
(d)	Sketch the graph of T versus t , clearly indicating any asymptotes with their equations and stating the coordinates of any points of intersection with the axes.	[4]
(e)	Find the time taken for the water to have a temperature of $50\ ^\circ\mathrm{C}.$ Give your answer correct to the nearest second.	[4]
(f)	The model for the temperature of the water can also be expressed in the form $T=T_0a^{rac{t}{10}}$ for $t\geq 0$ and a is a positive constant.	
	Find the exact value of a .	[3]

5.	[Maxi The fi	mum mark: 7] unction f is defined by $f(x)=rac{7x+7}{2x-4}$ for $x\in\mathbb{R}$, $x eq 2$.	23M.1.SL.TZ1.2
	(a)	Find the zero of $f(x).$	[2]
	(b)	For the graph of $y=f(x)$, write down the equation of	
	(b.i)	the vertical asymptote;	[1]
	(b.ii)	the horizontal asymptote.	[1]
		. 1 ()	

(c) Find
$$f^{-1}(x)$$
, the inverse function of $f(x)$. [3]

6.	[Maximum mark: 5] A function f is defined by $f(x)=1-rac{1}{x-2}$, where $x\in\mathbb{R}$, $x eq 2$.		23M.1.SL.TZ2.3	
	(a)	The graph of $y=f(x)$ has a vertical asymptote and a horizontal asymptote.		
		Write down the equation of		
	(a.i)	the vertical asymptote;	[1]	
	(a.ii)	the horizontal asymptote.	[1]	
	(b)	Find the coordinates of the point where the graph of $y=f(x)$ intersects		
	(b.i)	the y -axis;	[1]	
	(b.ii)	the <i>x</i> -axis.	[1]	

(c) On the following set of axes, sketch the graph of y=f(x), showing all the features found in parts (a) and (b).

[1]

7.	[Maxin The term $H(t)$ Celsiu	mum mark: 7] emperature of a cup of tea, t minutes after it is poured, can be mode $t_{ m s}=21+75{ m e}^{-0.08t},\ t\geq 0$.The temperature is measured in dens ($ m ^{\circ}C$).	23M.2.SL.TZ1.7 elled by egrees	
	(a.i)	Find the initial temperature of the tea.	[1]	
	(a.ii)	Find the temperature of the tea three minutes after it is poured.	[1]	
	(b)	After k minutes, the tea will be below $67~\degree{ m C}$ and cool enough to drink.		
		Find the least possible value of k , where $k\in\mathbb{Z}^+.$	[3]	
	As the tea cools, $H(t)$ approaches the temperature of the room, which is constant.			
	(c)	Find the temperature of the room.	[2]	
8.	[Maxin The po by the	mum mark: 7] opulation of a town t years after 1 January 2014 can be modelled e function	22N.2.SL.TZ0.5	
	P(t)	$=15000\mathrm{e}^{kt}$, where $k<0$ and $t\geq 0$.		
	lt is kr popul	nown that between 1 January 2014 and 1 January 2022 the lation decreased by 11% .		

Use this model to estimate the population of this town on 1 January 2041. [7]

9. [Maximum mark: 5]

The following table shows values of f(x) and g(x) for different values of x.

Both f and g are one-to-one functions.

x	-2	0	3	4
f(x)	8	4	0	-3
g (x)	-5	-2	4	0

(a) Find
$$g(0)$$
. [1]

(b) Find
$$(f \circ g)(0)$$
. [2]

(c) Find the value of
$$x$$
 such that $f(x) = 0$. [2]

10. [Maximum mark: 8]

22M.1.AHL.TZ2.3

[3]

A function f is defined by $f(x)=rac{2x-1}{x+1}$, where $x\in\mathbb{R},\;x
eq-1.$

The graph of y=f(x) has a vertical asymptote and a horizontal asymptote.

- (a.i) Write down the equation of the vertical asymptote. [1](a.ii) Write down the equation of the horizontal asymptote. [1]
- (b) On the set of axes below, sketch the graph of y=f(x).

On your sketch, clearly indicate the asymptotes and the position of any points of intersection with the axes.

(c) Hence, solve the inequality $0 < \frac{2x-1}{x+1} < 2.$ [1]

(d) Solve the inequality
$$0 < rac{2|x|-1}{|x|+1} < 2.$$
 [2]

11. [Maximum mark: 15] 21N.1.SL.TZ0.8 Consider the function $f(x)=a^x$ where $x,\ a\in\mathbb{R}$ and $x>0,\ a>1.$

The graph of f contains the point $\left(\frac{2}{3}, 4\right)$.

- (a) Show that a = 8. [2]
- (b) Write down an expression for $f^{-1}(x)$. [1]
- (c) Find the value of $f^{-1}\left(\sqrt{32}\right)$. [3]

Consider the arithmetic sequence

 $\log_8\,27\;,\;\log_8\,p\;,\;\log_8\,q\;,\;\log_8\,125\;,$ where p>1 and q>1.

(d.i)	Show that $27,\ p,\ q$ and 125 are four consecutive terms in a	
	geometric sequence.	[4]
(d.ii)	Find the value of p and the value of $q.$	[5]

12. [Maximum mark: 9] 21N.1.AHL.TZ0.2 The function f is defined by $f(x)=rac{2x+4}{3-x}$, where $x\in\mathbb{R},\ x
eq 3.$

Write down the equation of

(a.i)	the vertical asymptote of the graph of $f.$	[1]
(a.ii)	the horizontal asymptote of the graph of $f.$	[1]
Find t	the coordinates where the graph of f crosses	
(b.i)	the x -axis.	[1]

[1]

- (b.ii) the *y*-axis.
- (c) Sketch the graph of f on the axes below.

(d) The function g is defined by $g(x)=rac{ax+4}{3-x}$, where $x\in\mathbb{R},\ x
eq 3$ and $a\in\mathbb{R}.$

Given that
$$g(x)=g^{-1}(x)$$
, determine the value of a . [4]

- **13.** [Maximum mark: 5]21N.1.AHL.TZ0.3Solve the equation $\log_3 \sqrt{x} = \frac{1}{2\log_2 3} + \log_3(4x^3)$, where[5]
- 14. [Maximum mark: 5] 21M.1.SL.TZ1.1 The graph of y=f(x) for $-4\leq x\leq 6$ is shown in the following diagram.

- (a.i) Write down the value of f(2). [1]
- (a.ii) Write down the value of $(f \circ f)(2)$. [1]
- (b) Let $g(x) = rac{1}{2}f(x) + 1$ for $-4 \leq x \leq 6$. On the axes above, sketch the graph of g.

[3]

15. [Maximum mark: 7]

All living plants contain an isotope of carbon called carbon-14. When a plant dies, the isotope decays so that the amount of carbon-14 present in the remains of the plant decreases. The time since the death of a plant can be determined by measuring the amount of carbon-14 still present in the remains.

The amount, A, of carbon-14 present in a plant t years after its death can be modelled by $A = A_0 e^{-kt}$ where $t \ge 0$ and A_0 , k are positive constants.

At the time of death, a plant is defined to have 100 units of carbon-14.

(a) Show that
$$A_0=100.$$
 [1]

The time taken for half the original amount of carbon-14 to decay is known to be 5730 years.

(b) Show that
$$k = \frac{\ln 2}{5730}$$
. [3]

(c) Find, correct to the nearest
$$10$$
 years, the time taken after the plant's death for 25% of the carbon-14 to decay. [3]

16. [Maximum mark: 6]

Jean-Pierre jumps out of an airplane that is flying at constant altitude. Before opening his parachute, he goes through a period of freefall.

Jean-Pierre's vertical speed during the time of freefall, S, in ${
m m\,s^{-1}}$, is modelled by the following function.

$$S(t) = K - 60 \left(1. \, 2^{-t}
ight) \, , \; t \geq 0$$

where t, is the number of seconds after he jumps out of the airplane, and K is a constant. A sketch of Jean-Pierre's vertical speed against time is shown below.

Jean-Pierre's initial vertical speed is $0\,m\,s^{-1}$.

(a)	Find the value of $K.$	[2]
(b)	In the context of the model, state what the horizontal asymptote represents.	[1]
(c)	Find Jean-Pierre's vertical speed after 10 seconds. Give your answer in ${\rm km}{\rm h}^{-1}$.	[3]

17. [Maximum mark: 6] Let $f(x) = a \; \log_3(x-4)$, for x>4, where a>0.

Point $\mathrm{A}(13,\ 7)$ lies on the graph of f.

- (a) Find the value of a.
- (b) The x-intercept of the graph of f is (5, 0).

On the following grid, sketch the graph of f.

[3]

[3]

18. [Maximum mark: 15] 20N.1.AHL.TZO.H_12 Consider the function defined by $f(x)=rac{kx-5}{x-k}$, where $x\in\mathbb{R}\setminus\{k\}$ and $k^2
eq 5.$

(a)	State the equation of the vertical asymptote on the graph of		
	y=f(x).	[1]	
(b)	State the equation of the horizontal asymptote on the graph of		

(c) Use an algebraic method to determine whether f is a selfinverse function. [4]

[1]

Consider the case where k=3.

y = f(x).

(d)	Sketch the graph of $y=f(x)$, stating clearly the equations of	
	any asymptotes and the coordinates of any points of	
	intersections with the coordinate axes.	[3]

(e) The region bounded by the x-axis, the curve y = f(x), and the lines x = 5 and x = 7 is rotated through 2π about the x-axis. Find the volume of the solid generated, giving your answer in the form $\pi(a + b \ln 2)$, where $a, b \in \mathbb{Z}$. [6]

19. [Maximum mark: 6]

19N.2.AHL.TZ0.H_3

The following diagram shows the graph of y=f(x), $-3\leqslant x\leqslant 5$.

(a) Find the value of
$$\left(f\circ f
ight)(1)$$
. [2]

(b) Given that
$$f^{-1}\left(a
ight)=3$$
, determine the value of $a.$ [2]

(c) Given that
$$g(x) = 2f(x-1)$$
, find the domain and range of g . [2]

[5]

- **20.** [Maximum mark: 5]
 - (a) Sketch the graph of $y = \frac{x-4}{2x-5}$, stating the equations of any asymptotes and the coordinates of any points of intersection with the axes.

21. [Maximum mark: 10] 19M.1.AHL.TZ2.H_11 Consider the functions f and g defined by $f(x) = \ln |x|, x \in \mathbb{R} \setminus \{0\}$, and $g(x) = \ln |x+k|, x \in \mathbb{R} \setminus \{-k\}$, where $k \in \mathbb{R}, k > 2$.

(a)	Describe the transformation by which $f\left(x ight)$ is transformed to $g\left(x ight).$	[1]
(b)	State the range of g .	[1]
(c)	Sketch the graphs of $y=f\left(x ight)$ and $y=g\left(x ight)$ on the same axes, clearly stating the points of intersection with any axes.	[6]

The graphs of f and g intersect at the point P .

(d) Find the coordinates of P. [2]

© International Baccalaureate Organization, 2024