Practice exam papers

Mathematics: applications and interpretation Standard level Paper 1 Practice Set A

		(Jana	iaat	e ses	ssion	nur	nbe

1 hour 30 minutes

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Answer all questions. Answers must be written within the answer boxes provided.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A copy of the mathematics: applications and interpretation formula booklet is required for this paper.
- The maximum mark for this examination paper is [80 marks].

© Hodder Education 2020

Answers must be written within the answer boxes provided. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working. 1 [Maximum mark: 5] a The radius of the Earth is found to be 6.4×10^6 m correct to two significant figures. Find the upper bound on the possible value of the radius. [1] Hence find the upper bound on the surface area of the Earth, modelling it as a perfect sphere. [2] A textbook states that the area of the Earth is $5.10 \times 10^{14} \,\mathrm{m}^2$. Find the percentage error if the upper bound found in part **b** had been used as an estimate. [2]

a Find the volume of tb Find the acute angle	of the pyramid and the bas	e.
	 •	• • • • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • • • •	 	

3	[Maximum	mark.	67
3	<i> WIUX IIII UIII</i>	mark.	U

A biologist investigated the characteristics of a group of fruit flies. Her results are shown below:

	Red eyes	Black eyes
Wings	54	156
Wingless	12	34

b the probabil:	ity of having red eyes and wings ity of not having red eyes ity of having red eyes if the fly is wingless.	
		• • • • • •
	· · · · · · · · · · · · · · · · · · ·	• • • • • •
		• • • • • •
		• • • • • •
		• • • • • •
		• • • • • •
• • • • • • • • • • • •		• • • • • •
		• • • • • •
		• • • • • • •

- 4 [Maximum mark: 5]
 - a Evaluate ln 3.

[1]

b On the axes below, sketch the graph of $y = \ln x$

[2]

c i The graph $y = \ln x$ is reflected in the line y = x. Sketch the new graph on the axes above.

ii	Write down	the e	equation	of the	new	graph.
----	------------	-------	----------	--------	-----	--------

[2]

• • • • • • • • • • • • • • • • • • • •	• • • • • •
	• • • • • •
	• • • • • •
	• • • • • •
	• • • • • •
	• • • • • •
	• • • • • •

P	1.2	1.9	2.1	2.5	2.5	3.4	5.6	6.8	7	
D	3.1	3.4	3.3	4.8	4.5	4.1	7.2	7.7		
a Fin	d the S ₁	oearma	ın's ran	k corre	lation (coeffic	ient bet	ween <i>I</i>	P and D .	
b The	e one-ta	iled cr	itical v	alue at	5% sig	nifican	ce is 0.	643. D	oes the sample provide evidence	
of a	positiv	e asso	ciation	betwee	en the p	opulat	ion and	the nu	umber of doctors?	
c The	e numbe	er of do	octors i	n the la	rgest c	ity was	found	to be u	underestimated. How would the	
		-		rank co	orrelati	on coe	fficient	be affe	Sected if the true value were used?	
Jus	tify you	ır answ	er.							
			• • • • •			• • • •	• • • • •			
• • • • •	• • • • •	• • • •	• • • • •	• • • • •	• • • • •	• • • •	• • • • •	• • • • •		• •
			• • • • •							
			- • • • •				• • • •			• •
			• • • • •			• • • • •		• • • • •		• •
			• • • • •							
• • • • •	• • • • •		• • • • •		• • • • •	• • • •	• • • • •	• • • • •		• •
			• • • • •							
• • • • •	• • • • •	• • • • •	• • • • •	• • • • •	• • • • •	• • • •	• • • • •	• • • • •		• •
	• • • • •		• • • • •		• • • • •	• • • •	• • • • •			
• • • • •	• • • • •	• • • • •	• • • • •	• • • • •	• • • • •	• • • •	• • • • •	• • • • •		• •

	If the maximum value of the function $f(x) = 8 + 2x^2 - x^4$. If the area enclosed by the curve $y = 8 + 2x^2 - x^4$ and the x-axis.	
• • • • • •		• • • • •
• • • • • •		• • • • •
• • • • • •		
• • • • • •		
• • • • • •		
• • • • • •		
• • • • • •		
• • • • •		• • • • •
• • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • •
• • • • • •		
• • • • • •		
• • • • • •		

66

A gene in cats can be expressed in three different ways, depending upon the genetic material in the cell. These are described as HH, Hh and hh. A geneticist believes that this should be found in the ratio 1:2:1. He investigates a sample of 150 cats and finds the following data:

Gene expression	НН	Hh	hh
Frequency	31	77	42

Determine	anificant 1 1 '			4
Determine, at the 5% sig	gnificance level, i	there is evider	nce that the 1:2:1 prediction is incorre	ect.
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • •
		• • • • • • • • • • • • • • • • • • • •		• • • • • • •
••••••••••	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	•••••
		• • • • • • • • • • • • • • • • • • • •		
• • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • •

a	he graph of y against x has a gradient at any point equal to $3x^2 + 2$. It passes through the point (0,1). Find the equation of the graph. Find the equation of the normal to the graph passing through (0,1) in the form $ay + bx = c$	4
	where a , b and c are integers.	L
		_
• •		
• •		
• •		
• •		
• •		

			• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •
			 • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • • • • • • • • • • • • • •		 	
	• • • • • • • • • • • • • • • • • • • •		 •	
		· • • • • • • • • • • • • • • • • • • •	 	
· • • • • • • • • • • • • • • • • • • •		· • • • • • • • • • • • • • • • • • • •	 	

a Find the line j	(0, 4), $(0, 8)$ and $(0, 4)$, $(0, 4)$, $(0, 4)$, and $(0, 4)$ or expendicular to $(0, 4)$.	through <i>C</i> .	at is closest to <i>C</i> .		
	• • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •		
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • •
• • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • •
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •			• • • • • • •
					• • • • • • • •
			• • • • • • • • • • • • • • • • • • • •		
					• • • • • • • •

distance of the shi bearing should it				
 			 	,
 			 	,
 			 	,
 			 	,
 			 	,
 			 	,
 			 	,
 			 	,
 			 	,
 			 	,
 	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • •	 •	· • • • • • •

	ontract B has a cost of \$10 for the first 100 minutes, then charged at a rate of \$2 per 10 minutes. Find a model to describe C in terms of x under contract A. Find a piecewise linear model to describe C in terms of x under contract B. Hence find values of x for which contract B is cheaper than contract A.
• • •	
• • •	
• • •	
• • •	

	at the same speed without obstruction, find the coordinates of Sanjay's phone.
• •	
• •	
• •	
• •	
• •	
• •	
• •	
• •	

Mathematics: applications and interpretation Standard level Paper 2 Practice Set A

		(Cand	lidat	e ses	ssion	nur	nbe

1 hour 30 minutes

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Answer all questions in an answer booklet.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A copy of the mathematics: applications and interpretation formula booklet is required for this paper.
- The maximum mark for this examination paper is [80 marks].

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Answer all questions.

Do **not** write solutions on this page.

Answer all questions in an answer booklet. Please start each question on a new page.

1 [Maximum mark: 13]

The number of people (in thousands) subscribed to a website x weeks after it is launched is modelled by

$$f(x) = x^3 - 6x^2 + 9x + 4, x \ge 0$$

a	Find the initial number of subscribers when the website launches.	[1]
b	Find $f'(x)$.	[2]

c Interpret
$$f'(x)$$
 in context.

d Find all solutions of
$$f'(x) = 0$$
. [2]

e Find the values of
$$x$$
 for which $f(x)$ is increasing. [2]

$$\mathbf{f} \quad \text{Sketch } y = \mathbf{f}(x).$$

g How long does it take the website to reach 10 000 subscribers? [2]

2 [Maximum mark: 12]

A fair four-sided dice is rolled twice. S is the sum of the scores.

a Copy and complete the probability distribution of *S*. [2]

S	2	3	4	5	6	7	8
P(S = s)	$\frac{1}{16}$	$\frac{2}{16}$	$\frac{3}{16}$	4/16	·		

b Find the expected value of S. [2]

c Given that the total is more than 4, find the probability that it is more than 6. [3]

Eric plays a game where he rolls a fair four-sided dice twice. If the score is four or less, he loses and pays \$1. If he scores 5 or more, he receives k.

d Find the value of k if the game is fair. [5]

3 [Maximum mark: 14]

Kwami keeps a record of his best $5000 \,\mathrm{m}$ time (y minutes) for each week (x) in the 13 weeks after he starts training for a competition season. The results are shown here:

75

[4]

x	1	2	3	4	5	6	7	8	9	10	11	12	13
y	18.5	18.1	17.6	17.2	16.8	18.6	16.4	14.6	14.3	14.2	14.5	14.4	14

- a i Find the mean of Kwami's best times each week.
 - ii Find the standard deviation in Kwami's best times each week.
 - iii Find Pearson's product moment correlation coefficient for these data. What type of correlation is suggested by this value?

The results are illustrated in the following scatter diagram.

- **b** i Competitions occurred every week from week n until week 12. Athletes generally have improved performance in competitions. Use the graph to suggest the value of n.
 - ii During one of the weeks before competitions began, Kwami was ill. Use the scatter graph to suggest which week this was.

For the rest of this question, the result from the week where Kwami was ill should be excluded.

- \mathbf{c} i Create a piecewise linear model to predict y for a given x.
 - ii Compare and contrast, in context, the coefficients of x in each part of the linear model. [5]
- d Use your model to predict the time Kwami would have achieved in the week he was ill if he had not been ill. [2]
- e Explain why it would not be valid to use this model to predict Kwami's times in the following season. [1]

4 [Maximum mark: 13] Almira is considering two different savings schemes. Both schemes involve an initial investment of \$1000 in an account. In scheme A, at the end of each year \$50 is added to the account. In scheme B, at the end of each year 4% compound interest is added to the account. a How much will be in Almira's account at the end of the fifth year after investment in Scheme A ii Scheme B. Give your answer correct to two decimal places. [4] What annual compound interest rate would achieve the same outcome for Almira as investing in scheme A for five complete years? [2] Almira wants to invest for n complete years. For what values of n would Almira be better off investing in scheme B? [3] **d** Almira estimates that there is 2.5% depreciation each year. How long would Almira need to save in scheme B to use her savings to purchase something currently valued at \$1400? [4] [Maximum mark: 15] The results in an intelligence test are normally distributed with a mean of 100 and a standard deviation of 30. **a** Find the probability that a randomly chosen individual will have a score above 150. [1] **b** Only 10% of people have a score above k. Find the value of k. [2] To enter a high intelligence society, people need to have a score of at least 150. Five people are chosen at random to take the test. **c** Find the probability that at least two of them qualify to enter the high intelligence society. [4] d Find the probability that the fifth person to take the test is the second person to attain a score of at least 150. [3] People with a score of more than 170 in the test are allowed to enter a merit stream within the society. e What percentage of the society are members of the merit stream? [4] State one assumption required in your answer to part e. [1]

6 [Maximum mark 13]

Metal rods are modelled as perfect cylinders with radius 1 cm. They are packed into a box in two different ways.

In method 1, the repeating unit is shown below:

The repeating unit contains four quarter circles and one full circle.

a Explain why the diagonal of the square has length 4 cm. [1]

Find the proportion of the box that is filled with metal. [4]

c State one assumption required in your answer to part b. [1] In method 2, the repeating unit is shown below:

d Find the proportion of the box that contains metal in method 2. [5]

e Determine, with justification, whether method 1 or method 2 packs more rods into the same box. [2]

Mathematics: applications and interpretation Standard level Paper 1 Practice Set B

		(Cand	idat	e ses	ssion	nun	nber
						0)		

1 hour 30 minutes

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Answer all questions. Answers must be written within the answer boxes provided.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A copy of the mathematics: applications and interpretation formula booklet is required for this paper.
- The maximum mark for this examination paper is [80 marks].

© Hodder Education 2020

Answers must be written within the answer boxes provided. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1 [Maximum mark: 4]

The sector OAB has area 15 cm^2 .

The perimeter of the sector is 4 times the length of the arc AB.

Find the radius, r. [4]

• • • •	• • •	• • •		• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •		• • • •			• • •	• • • •		
• • • •	• • •	• • •		• • •		• • •	• • •	• • •	• • •		• • •		• • •	• •			• • •		• • •		• • • •		• • • •	• • •			• • • •		
• • • •	• • •	• • •		• • •		• • •	• • •	• • •	• • •	• • •	• • •		• • •	• •	• • •		• • •	• • •	• • •		• • • •	• • •	• • • •	• • •	• • •	• • •	• • • •		
• • • •	• • •	• • •		• • •		• •		• • •	• • •	• • •	• • •	• • •	• • •	• •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • • •	• • •	• • •	• • •	• • • •		
• • • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • • •	• • •	• • •	• • •		• • • •	
• • • •	• • •	• • •	• • •	• • •	• • •	• •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • • •	• • •	• • •	• • •	• • • •		
• • • •	• • •	• • •		• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •		• • •	• •		• • •	• • •		• • •	• • •	• • • •	• • •	• • • •	• • •	• • •	• • •	• • • •		
• • • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• •	• • •	• • •	• • •	• • •	• • •	• • •	• • •		• • • •	• • •	• • •	• • •	• • • •	• • • •	
• • • •	• • •	• • •		• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• • •	• •	• • •	• • •	• • •	• • •	• • •	• • •	• • • •	• • •	• • • •	• • •	• • •	• • •	• • • •	• • • •	

Score	0	1	2	3	4	5	6	7	8	9	10		
Frequency	7 0	1	0	1	1	2	2	3	2	1	1		
a Find the	e media	an sco	re.										
b Find the	e interd	uartil	e rang	ge.									
c Determ					ns, w	hethe	r any (of the	scores	are o	utliers	5.	
• • • • • • • • • •			• • • • •		• • • •	• • • • •	• • • •					• • • • • • • • • • • • • • • • • • • •	•
					• • • •		• • • •						
• • • • • • • • • • • • • • • • • • • •			• • • • •		• • • •	• • • • •	• • • •						•
					• • • •		• • • •						
• • • • • • • •			• • • • •		• • • •		• • • •						•
					• • • •		• • • •						•
• • • • • • • • •			• • • • •		• • • •		• • • •						•
					• • • •								•
• • • • • • • • •			• • • •		• • • •		• • • •						•
					• • • •		• • • •						
					• • • •		• • • •						•
					• • • •		• • • •						•
			• • • • •		• • • •		• • • •				• • • • •		•

Laura is training for a marathon. The number of miles she runs in each training session forms an arithme sequence. In her fifth session she runs 8 miles. The total distance she has run in the first eight sessions is 58 miles. a Find the distance she ran in her first training session and the increase in distance between	
consecutive sessions. b Hence find the number of the training session in which she first runs a full marathon distance of 26 miles.	[4

	gures. Find i the upper bound on the resistance
b	ii the lower bound on the resistance. Hence state the value of the resistance to an appropriate degree of accuracy, justifying your choice.
• •	
• •	
• •	

	logy to find the limit significance of you			nds towards 1.	
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		
			• • • • • • • • • • • • • • • • • • • •		
	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • •		• • • • • • • •
			• • • • • • • • • • • • • • • • • • • •		• • • • • • • •
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • •
		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •		• • • • • • • •
		• • • • • • • • • • • • • • • • • • • •			

from each town.	10.0	111	15.2	15.0	10.0	10.2	1		
Gamla Stan (°C) Nya Stan (°C)	12.3	14.1	16.3	15.9	19.3	13.2	16.9	15.4	
He uses these san								13.1	
a State the null ab Calculate the pc State the conc	p-value for	r this test.	theses.				-		
d State two assu			onduct thi	is test.					
• • • • • • • • • • • • • • • • • • • •	• • • • • • •	• • • • • • • •	• • • • • • •	• • • • • • •	• • • • • • •	• • • • • • •	• • • • • •	• • • • • • •	• • • • • •
	• • • • • • •				• • • • • • •	• • • • • • •	• • • • • •		• • • • • •
							• • • • • •	• • • • • • • • •	• • • • • •
	• • • • • • • •								
							• • • • • •		• • • • • •
			· • • • • • • •						

	ne fourth term of a geometric sequence is 13.5 and the sum of the first three terms is 74. Indeed the first term and common ratio of the sequence.
• •	
• •	
• •	
• •	
• •	

She The b F	Find the value of her pension on retirement. will use the sum saved in the scheme to buy an annuity also at a 2.5% per annum interest rate. annuity will pay out £750 per month for life. How long after retiring must Erica live before she starts receiving money that was not saved in her pension?
• • • •	
• • • •	
• • • •	
• • • •	
• • • •	
• • • •	
• • • •	

•	[Maximum mark: 8] A manufacturer produces x hundred items of a particular product each week and makes a profit $P(x)$ in thousands of US dollars.	
	He knows that the rate of change of profit with respect to the number of items produced is given by $-3x^2 + 5x + 2$. a Find the number of items he should produce each week to maximize profit. He makes a profit of \$2000 when producing 100 items. b Find $P(x)$.	[3]

10	[Maximum	mark:	97
10	ITTUANTITUUTT	man.	/

88

A surgery manager claims that patient waiting times for pre-booked appointments at his surgery are normally distributed with a mean of 14 minutes and a variance of 36 minutes.

A sample of the waiting times for 80 patients is taken:

Waiting time/min	< 5	5–10	10-15	15–20	> 20
Observed frequency	3	8	23	30	16

This sample is used to conduct a χ^2 goodness of fit test to investigate the manager's claim. The test is conducted at the 5% level.

State the null and alternative hypotheses.	[2]
--	-----

b Copy and complete the following table. [2]

Waiting time/min	< 5	5-10	10-15	15–20	> 20
Expected frequency	5.34				

2	Find the p -value for the test.	[3]
---	-----------------------------------	-----

d State the conclusion of the test. [2]

a state the conclusion of the test.	

	 The London Eye is an observation wheel with a diameter of 120 m that rotates once every 30 minutes. The pods that carry customers are arranged around the rim of the wheel. A particular pod starts at the lowest point of the circle 2 m above ground level. The height, h metres, of that pod at time t minutes can be modelled by the function h = a cos (bt) + c. a Find the values of a, b and c. b Find the length of time for which the pod is higher than 50 m above ground level in any one revolution of the wheel. 	
	Tevolution of the wheel.	
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		

x	0	1	2	3	4		
P(X=x)	0.1	а	b	0.2	0.15		
a Show tob Given toZhuo plays	s charged \$2 hat $a + b = 0$ that the game is the game to e probability	0.55. le is fair, fin wice.	and a and b .		the score th	hey achieve in the game.	
							• • •
• • • • • • • • •			• • • • • • • •				
							• • •
• • • • • • • • • •	• • • • • • • •	• • • • • • • •	• • • • • • •	• • • • • • •	• • • • • • •		• • •
• • • • • • • • • •	• • • • • • • • •	• • • • • • • • •	• • • • • • • •	• • • • • • • • •	• • • • • • •		• • •
							• • •
							• • •
• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • • • • • • • • • • • • •			• • •
• • • • • • • • • • •				• • • • • • • •			• • •

Mathematics: applications and interpretation Standard level Paper 2 Practice Set B

		(Cand	lidat	e ses	ssion	nun	nber
						0.7		

1 hour 30 minutes

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Answer all questions in an answer booklet.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A copy of the mathematics: applications and interpretation formula booklet is required for this paper.
- The maximum mark for this examination paper is [80 marks].

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Answer all questions.

Do **not** write solutions on this page.

Answer all questions in an answer booklet. Please start each question on a new page.

1 [Maximum mark: 15]

Fola is researching the possible relationship between height and weight of staff at his school. He initially decides to select his sample by taking an alphabetic list of all staff and selecting every 10th person on the list.

- a i Name this sampling technique.
 - ii Explain why this does not produce a simple random sample.

[2]

He then decides to change his sampling technique by taking a stratified sample of men and women.

He wants a sample size of 12 and knows there are 46 men and 63 women at the school.

- **b** i Find the number of men he should include in his sample.
 - ii State the sampling method he then needs to employ to select the particular men and women.
 - iii State how cluster sampling differs from stratified sampling.

[4]

He collects the following data:

Height/cm	153	158	161	162	164	165	167	172	175	179	184	190
Weight/kg	52.4	54.6	59.7	57.1	58.5	74.2	62.8	73.1	82.3	60.2	74.3	86.6

- c Find Pearson's product moment correlation coefficient and interpret this value in context.
- [2]

- **d** Use an appropriate regression line to estimate the weight of a person with height
 - i 140 cm

ii 170 cm.

[3]

[2]

- e Comment on the reliability of the predictions in parts di and dii.
- f Suggest two ways Fola could improve the reliability of any predictions made from linear regression
- for this population. [2]

2 [Maximum mark: 18]

A pleasure boat runs trips around the local bay.

It leaves its mooring and manoeuvres onto a straight line path that keeps it equidistant from the end of the harbour walls located at the points with coordinates (1, 8) and (5, 2).

a Find the equation of its path in the form ax + by + c = 0.

[4]

As the boat passes between the harbour walls, the captain observes that the angle of elevation to the top of one of the walls is 12°. The harbour master is 50 m closer to that wall and observes that the angle of elevation is 55°.

b Find the height of the harbour wall.

[5]

Once clear of the harbour, the boat reaches a buoy at A and from there moves on a bearing of 310° for 20 km until it reaches point B.

It then moves on a bearing of 055° for $30 \,\mathrm{km}$ to point C.

c Find the angle $A\hat{B}C$.

[2]

d Find the shortest distance from C back to the buoy at A.

[3]

e Find the bearing the boat must travel on to cover the shortest distance from C back to A.

[4]

[Maximum mark: 16]

The entrance to a railway tunnel is shaped as shown below:

John measures the height, h, at various distances, x, from one side.

x/m	0	1	2	3	4	5	6	7
<i>h</i> /m	2.3	3.5	4.3	4.7	4.7	4.3	3.5	2.3

Use the trapezoidal rule with 5 strips to estimate the cross-sectional area of the tunnel. [3] Explain whether your answer in part a is an underestimate or overestimate of the true cross-sectional area. [2] In fact the curve of the entrance is a parabola, $h = ax^2 + bx + c$. Find a, b and c. [4] Find the maximum height of the tunnel. [2] Find the exact value of the actual cross-sectional area. [2]

Find the percentage error in the estimate from part a. [2] How could the accuracy of the estimate in part **a** be improved? [1]

[Maximum mark: 16]

A telesales worker has constant probability of 0.04 of a call resulting in a sale.

Find the probability of achieving exactly two sales in the first 10 calls made. [2]

Find the probability of achieving at least two sales in the first 10 calls made. [2]

Find the number of calls he needs to make in a day to average two sales per day.

ii In this case, find the variance of the number of sales achieved. [4]

In a 5-day week, find the probability that he achieves at least two sales in the first 10 calls made on more than one day. [4]

Find the least number of calls he needs to make in order that the probability of making at least one sale is greater than 95%. [4] 94

[Maximum mark: 15]

A wooden salt shaker is formed from a hemisphere of radius r on top of a cylinder of height h as shown.

The volume of the salt shaker is 300 cm³.

The manufacturer wants to use the least amount of wood possible in the production process.

a Show that $h = \frac{900 - 2\pi r^3}{3\pi r^2}$. b Hence find an expression for the surface area, A, of the salt shaker in the form $A = ar^b + cr^d$, [4]

where a, b, c and d are constants to be found. [5]

c Find

the minimum amount of wood needed

ii the radius to achieve this minimum

iii the height to achieve this minimum. [5]

State one reason why the manufacturer might not wish to use the dimensions found in parts cii and ciii. [1]

Mathematics: applications and interpretation Standard level Paper 1 Practice Set C

		(Cand	idat	e ses	ssion	nun	nber
						0.7		

1 hour 30 minutes

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Answer all questions. Answers must be written within the answer boxes provided.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A copy of the mathematics: applications and interpretation formula booklet is required for this paper.
- The maximum mark for this examination paper is [80 marks].

Answers must be written within the answer boxes provided. Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

1 [Maximum mark: 6]

A metal bar is in the shape of a prism with a semicircular cross-section. The dimensions are shown in the diagram.

a Find the volume of the bar. Give your answer in cm³, in the form $a \times 10^k$ where $1 \le a < 10$ and $k \in \mathbb{Z}$.

The bar is melted down and all the metal used to make a sphere.

b Find the radius of the sphere. [3]

••••••••

a I	Single has sides $AB = 6.8 \text{cm}$, $BC = 4.7 \text{cm}$ and $CA = 9.1 \text{cm}$. Find, in degrees, the size of the angle $A\hat{B}C$. Find the area of the triangle.	
• • • •		• • •
• • • •		
• • • •		
		• • •
• • • •		
• • • •		• • •
		• • •
 • • • •		
• • • •		• • •
• • • •		• • •
• • • •		

3 [Maximum mark: 5]

Roshni collected 200 apples from her orchard. The cumulative frequency graph below shows their mass in grams.

a Estimate how many apples weigh more than 90 g.

[2]

b The heaviest 15% of the apples are going to be sent to the local restaurant. Estimate the least weight of an apple sent to the restaurant.

[3]

 •
 •
 •
 •

a	arithmetic sequence has first term 7 and the sum of the first 20 terms is 640. Find the 20th term of the sequence the 39th term of the sequence.
<u> </u>	the 37th term of the sequence.
• •	
• •	
• •	
• •	
• •	
• •	
• •	
• •	

a	75 cm ² . Find the value of θ .
b	Find the perimeter of the sector.
• •	
• •	
• •	
• •	
• •	
• •	

	Height/cm	8–12	12–15	15–20	20–25	25–28	
	Frequency	5	6	8	7	4	
a	Estimate t	he mean a	nd the star	ndard devia	ation of the	30 flowers.	
Tl	he measuren	nents are c	converted	into inches	, where 1 i	nch = 2.54 cm.	
b	Find the m	nean and v	ariance of	the heights	s in inches		,
• •		• • • • • •		• • • • • • •	• • • • • • •		
	• • • • • • • •	• • • • • • •	• • • • • • •	• • • • • • • •			
			• • • • • • •				
• •	• • • • • • • •	• • • • • • •	• • • • • • •	• • • • • • • •	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •
	• • • • • • • •		• • • • • • •				
• •	• • • • • • • • •	• • • • • • • •	• • • • • • •	• • • • • • • •	• • • • • • • •		
	• • • • • • • • •		• • • • • • •				
			• • • • • • •				
• •	• • • • • • • •	• • • • • • •	• • • • • • •	• • • • • • • •	• • • • • • •		• • • • • • • • • • • • • • • • • • • •
	• • • • • • • •		• • • • • • •				
	• • • • • • • • •	• • • • • • • •	• • • • • • •				
• •	• • • • • • • •	• • • • • • • •	• • • • • • •	• • • • • • • •	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • •
• •							

7	[Maximum	mark.	77
/	1V1UXIIIIUIII	mun.	//

Notebooks are delivered to schools in boxes of different sizes. A teacher thinks that the volume,

 $V \text{cm}^3$, of a box of height x cm can be modelled by the equation

$$V = ax^3 + bx^2 + cx.$$

He measures heights and volumes of three boxes and obtains the following results:

X	8	10	15
V	1890	1690	703

a Find the values of a, b and c.

b According to this model, what should the height of a box with volume 1720 cm³ be? Give your answer correct to one decimal place. [2]

Would this be a good	d model for a box of	height 20 cm? Ex	plain your answer	•	
			• • • • • • • • • • • • • • • •		• • • •
				• • • • • • • • • • • • • • • • • • • •	• • • •
				• • • • • • • • • • • • • • • • • • • •	• • •
					• • • •
					• • • •
				• • • • • • • • • • • • • • • • • • • •	• • • •
				• • • • • • • • • • • • • • • • • • • •	• • • •
	• • • • • • • • • • • • • • • • • • • •			• • • • • • • • • • • • • • • • • • • •	

8 [Maximum mark: 6]

The diagram shows a cave entrance, whose outline can be modelled by the equation $y = 0.8 (4 - x) \ln x$, where x and y are measured in metres. Points A and B are on the ground.

a Find the coordinates of A and B.

b Find the height of the cave entrance at its highest point. [2]

c Find the area of the opening. [2]

 •
 •

	The graph of $y = 2x^3 - ax^2 + x + 2b$ has a local minimum point at $(2, -6)$. Find the values of a and b .	
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		
•		

[2]

11	[Maximum	mark:	67
4.4	1 111 00 20 0 1 1 0 0 0 1 1 0	muli iv.	\cup

Rin has started a new martial arts club. The number of members during the first six months is shown in the table:

Month	1	2	3	4	5	6
Number of members	26	34	44	51	59	66

Rin thinks that the number of members can be modelled by a sequence that is approximately arithmetic.

- Find an average increase in the number of members over the first six months.
- Use this model, with the first term equal to 26, to predict the number of members at the end of the year (in month 12). [2]

Gabor thinks that a better way to predict the number of members in future is to use a regression line.

c	Use the data from the table to find the equation of the regression line and use it to predict the number
	of members at the end of the year.

of members at the end of the year.	[2]

	,	20	30	35	40	50	
F'	(v)	-0.0773	-0.0023	0.0195	0.0307	0.0217	
b Su trac Th the	ggest a vel to ne minir	whole num ninimize its num fuel co	ber speed, v, fuel consumons fuel consumption is 4.6 litres p	with $20 \le v$ aption. Justify 4.2 litres pe	≤ 50, at whi y your choice er 100 km. W	ich the car she. Then the car i	s the speed increases? nould is travelling at 20 km h ⁻¹ , table to sketch the graph of
					· • • • • • • • • • • • • • • • • • • •		•••••••••••
• • • •	• • • • • •						
• • • •	• • • • •	• • • • • • • • •		• • • • • • • • • • • • • • • • • • • •	· • • • • • • • • • • • • • • • • • • •		
• • • • •	• • • • •	• • • • • • • • •	• • • • • • • • • •		• • • • • • • • •		
• • • •	• • • • •		• • • • • • • • • • • • • • • • • • • •		• • • • • • • • •		
• • • • •	• • • • •	• • • • • • • •	• • • • • • • • • • • • • • • • • • • •		••••••		
• • • •	• • • • •	• • • • • • • • •			• • • • • • • • • •		
• • • •	• • • • •	• • • • • • • •			· • • • • • • • • • • • • • • • • • • •		
• • • •	• • • • •	• • • • • • • •		• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • •		

13 [Maximum mark: 6]

a

A running coach investigates whether different running shoes make a difference to athletes' running times. He times eight of his runners over the same distance, wearing two different pairs of shoes. The times, in seconds, are recorded in the table.

				Ath	lete	A		
Shoes	A	В	С	D	Е	F	G	Н
Pair 1	26.2	31.5	28.2	22.7	33.8	25.2	29.7	30.3
Pair 2	Pair 2 27.3 30.8			25.7	31.8	26.5	31.2	33.1

The coach decides to conduct a hypothesis test, using a 5% significance level, to test whether the mean times are different for the two pairs of shoes.

State suitable hypotheses for the test.	[1]
---	-----

b Complete the table showing the difference in times for each athlete. [2]

Athlete	A	В	С	D	Е	F	G	Н
Time difference	-1.1	0.7						

Į.	e	Н	eno	e e	ca	rry	<u></u> у (ou	t t	h	e t	es	— st a	an	d s	— sta	– ate	 -	/0	ur		— 2 0 1	_ nc	L :lt	— ısi	— O1	— n.				- 0								_												/	[3]
																	_	_			_	_		_	_	_																		_								_
•	• •	• •		•				•		•					•		•		•		•			•		• (•			•				•					• •	•			•				•		• •		
•								•							•						•			•		• •		•							•						•			•				•				
•	• •			•								•					•		•		•			•		• •		•			•				•						•			•				•				
•		• •		•						•		•							•		•			•		• (•							•						•			•				•				
•				•				•		•		•			•		•		•				• •	•		• 1		•			•				•						•			•				•				
·					•			•				·			•																													•								
•	• •	• •	• • •	•	•	•	• •	•	• •	•	• •	•	•	• •	•	• •	• (•	•	• •	•	• •	•	•	•	• •	•	•	•	• •	•	•	• •	• •	•	• •	• •	•	•	• •	• (•	• •	•	• •	• •	• •	•	• • •	• •		
•	• •	• •	• • •	•	•	• •	• •	•	• •	•	• •	•	•	• •	•	• •	•	•	•	• •	•	• •	•	•	•	• •	. •	•	•	• •	•	•	• •	• •	•	• •	• •	•	•	• •	•	• •	• •	•	• •	• •	• •	•	• • •	• •		
•	• •	• •	• • •	•	•	• •	• •	•	• •	•	• •	•		• •	•	• •	•	• •	•	• •	•	• •	. •	• •	•	• •		•	•	• •	•	•	• •	• •	•	• •	• •	•	•	• •	•	• •	• •	•	• •	• •	• •	•	• • •	• •		
•	• •	• •	• • •	•	•	• •	• •	•	• •	•	• •	•	• •	• •	•	• •	• (• •	•	• •	•	• •	•	•	• •	• •	•	• (•	• •	•	•	• •	• •	•	• •	• •	•	•	• •	•	• •	• •	•	• •	• •	• •	•	• • •	• •		

$P(B) = \frac{1}{6}$, $P(A \cup B) = \frac{1}{5}$ and $P(A \mid B) = 4P(A)$.	
Find $P(A \cap B)$.	

Mathematics: applications and interpretation Standard level Paper 2 Practice Set C

		(Cand	idat	e ses	ssion	nun	nber

1 hour 30 minutes

Instructions to candidates

- Write your session number in the boxes above.
- Do not open this examination paper until instructed to do so.
- A graphic display calculator is required for this paper.
- Answer all questions in an answer booklet.
- Unless otherwise stated in the question, all numerical answers should be given exactly or correct to three significant figures.
- A copy of the mathematics: applications and interpretation formula booklet is required for this paper.
- The maximum mark for this examination paper is [80 marks].

Full marks are not necessarily awarded for a correct answer with no working. Answers must be supported by working and/or explanations. Solutions found from a graphic display calculator should be supported by suitable working. For example, if graphs are used to find a solution, you should sketch these as part of your answer. Where an answer is incorrect, some marks may be given for a correct method, provided this is shown by written working. You are therefore advised to show all working.

Answer all questions.

Do **not** write solutions on this page.

Answer all questions in an answer booklet. Please start each question on a new page.

1 [Maximum mark: 17]

The table shows the marks eight students obtained on two different exam papers.

		Student							
	A	В	C	D	E	F	G	Н	
Paper 1	37	61	81	43	42	72	58	77	
Paper 2	22	51	61	38	31	55	45	63	

The data are also shown on the scatter diagram.

- a Find the mean mark for each paper and add the corresponding point to the scatter graph.
- **b** Draw a line of best fit. [1]

[2]

[1]

c Calculate Pearson's product moment correlation coefficient for the data.

Two students did not take the second paper and a teacher wants to estimate what mark they would have got in it.

d Find the equation of the appropriate regression line that the teacher should use.

[2]

[5]

[1]

- e In Paper 1, Student J got 57 marks and Student K got 23 marks.
 - i Use your regression line to estimate how many marks each student would have got in Paper 2.

ii For each student, comment on the reliability of the estimate, giving reasons for your answers. Students A to H recorded how long they spent revising for Paper 1. The graph shows the time and the Paper 1 mark for each student. The teacher wants to determine whether there is any evidence of positive

- **f** By referring to the graph, explain why Pearson's product moment correlation is not an appropriate measure of correlation.
- **g** i Complete the table of ranks below.

Student	A	В	С	D	Е	F	G	Н
Revision time rank	1	5		3			4	8
Paper 1 rank	1			3	2		4	7

- ii Calculate Spearman's rank correlation coefficient.
- iii The critical value of the correlation coefficient for the 5% significance level is 0.643. Stating your hypotheses and conclusion clearly test, at the 5% significance level, whether there is evidence of positive correlation between the time spent revising and the mark on Paper 1. [5]

[Maximum mark: 14]

The diagram shows a cube with side 5 cm and a cylinder with base radius r cm and height h cm.

- Find the length of *AB*. [2]
- Find the angle that the line AB makes with the horizontal base of the cube. [2]

The cylinder and the cube have the same volume.

- Show that the surface area of the cylinder is given by $\frac{250}{r} + 2\pi r^2$. Compare the minimum possible surface area of the cylinder to the surface area of the cube. [4]
- [3]
- Assume the cylinder has the minimum possible surface area found in part d. The line CD is the longest line that can be drawn between the bottom base and the top base of the cylinder. Find the angle that this line makes with the base of the cylinder. [3]

[3]

3 [Maximum mark: 11]

The diagram shows the curve with equation $y = 4 - x^2$. The line y = 4 - x intersects the curve at the points A and B. The point C is the midpoint of AB. The line y = k - x is tangent to the curve at point D.

aFind the coordinates of C.[3]bFind the x-coordinate of D.[3]cFind the value of k.[3]dFind the distance CD.[2]

4 [Maximum mark: 11]

The times taken by children to complete a race can be modelled by a normal distribution with mean 5.56 minutes and standard deviation 2.5 minutes.

a Find the probability that a randomly selected child completes the race in less than 9.2 minutes. [1]
b Given that a randomly selected child completes the race in less than 9.2 minutes, find the probability that they complete the race in less than 8.3 minutes. [2]

Twenty randomly selected children run the race.

- c Find the expected number of children who complete the race in less than 9.2 minutes. [2]
- d Find the probability that at least 18 of the 20 children complete the race in less than 9.2 minutes. [3]

Two separate groups of 20 children run the race.

e Find the probability that in exactly one of the groups, at least 18 children complete the race in less than 9.2 minutes.

5 [Maximum mark: 15]

In the Voronoi diagram below, post offices are located at sites A(3, 1), B(6, 6), C(9, 5) and D(9, 1).

a A shop is located at the point with coordinates (5, 4). The manager wants to go to the nearest post office. Which post office should she go to?

b Write down the equations of the perpendicular bisectors of AD and CD. [2]

c Find the equation of the perpendicular bisector of BD, writing your answer in the form ax + by = c where a, b and c are integers. [4]

d Find the coordinates of the vertices P and Q.

e A new post office is to be opened at one of P or Q. Which of the two locations should be chosen if the new post office is to be as far as possible from the existing post offices? Show your method clearly. [5]

6 [Maximum mark: 12]

Newton's law of cooling states that the difference between the temperature of a cooling object and the background temperature decreases exponentially with time. This model can be represented by the equation $T = B + A \times 10^{-kt}$, where T is the temperature of the object in °C, B is the background temperature, t is the time in minutes, and A and B are constants.

A hot cake is placed in a room whose temperature can be assumed to be constant. The difference between the temperature of the cake and the room temperature halves every 3 minutes. The initial temperature of the cake is 93 °C.

a Show that the temperature of the cake after 9 minutes is given by $T = \frac{93 + 7B}{8}$ [4]

b Show that $10^{3k} = 2$. [3]

It is found that the temperature of the cake after 9 minutes is 30 °C.

c How much longer will it take for the cake to cool down to 24 °C? [5]

Practice Set A: Paper 1 Mark scheme

1 **a** 6.45×10^6 (m) A1

[I mark] **b** $4 \times \pi \times (6.45 \times 10^6)^2$ (M1)

 $= 5.23 \times 10^{14}$ c $\frac{5.23 \times 10^{14} - 5.10 \times 10^{14}}{5.10 \times 10^{14}} \times 100$ (M1)

= 2.51% A1

[2 marks] Total [5 marks]

2 **a** $V = \frac{1}{3} \times 6 \times 4^2$ (M1)

32 (cm³) A1

b Diagonal of square = $\sqrt{4^2 + 4^2}$ (= 5.66) (M1) Length from corner to centre of square = 2.83 (A1) Angle is $\tan^{-1}\left(\frac{6}{2.83}\right)$ (M1)

 $= 64.8^{\circ} (1.13 \text{ radians})$ A1 [4 marks]

Total [6 marks]

3 a $\frac{54}{54+156+12+34}$ (M1)

 $\frac{54}{256} \left(= \frac{27}{128} \right)$ A1

 $\mathbf{b} \quad \frac{156 + 34}{54 + 156 + 12 + 34} \tag{M1}$

 $\frac{190}{256} \left(= \frac{95}{128} \right)$

256 (128) A1

[2 marks]

 $\mathbf{c} \quad \frac{12}{12+34} \tag{M1}$

 $\frac{12}{46} \left(= \frac{6}{23} \right)$ A1 [2 marks]

Total [6 marks]

a 1.10
 b Logarithmic graph with y axis as asymptote
 A1
 [1 mark]
 A1

Passing through (1,0) and roughly (3,1.10)

A1

[2 marks]

c i Exponential graph (as shown below) passing through (0, 1)

ii $y = e^x$

Α1 [2 marks] Total [5 marks]

a Ranks are

P	8	7	6	4.5	4.5	3	2	1
D	8	6	7	3	4	5	2	1

M1A1

(Or ranks could be reversed)

So from GDC, $r_s = 0.898$

Α1 [3 marks]

0.898 > 0.643, therefore there is evidence of a positive association

[1 mark]

Value would not change Since an increase in the largest value of D would not change its rank

Α1 R1

Α1

[2 marks] Total [6 marks]

Sketch of graph

(M1)

From GDC, max value is 9

Α1

[2 marks]

b Solve
$$8 + 2x^2 - x^4 = 0$$

$$x = \pm 2$$

Area = $\int_{-2}^{2} 8 + 2x^2 - x^4 dx$

Area =
$$\int_{-2} 8 + 2x^2 - x^4 d$$

Α1

$$=\frac{448}{15}\approx 29.9$$

[4 marks]

Total [6 marks]

Expected frequencies are

	нн	Hh	hh
38	37.5	75	37.5

2 degrees of freedom

$$\chi^2 = 1.72$$

(M1)

p-value = 0.423

Α1 R1

p-value > 0.05, therefore there is no evidence that hypothesis is incorrect

Total [6 marks]

8 **a**
$$y = \int 3x^2 + 2 \, \mathrm{d}x$$
 (M1)

$$= x^3 + 2x + c$$
 (A1)
When $x = 0$, $y = 1$ so $y = x^3 + 2x + 1$ (M1) A1

[4 marks]

b When $x = 0$, gradient of tangent is 2	(M1)
So gradient of normal is $-\frac{1}{2}$	(A1)
$y = -\frac{1}{2}x + 1$	(M1)
2y + x = 2	A1
	[4 marks]
EITHED	Total [8 marks]
EITHER S = 7	/ A 1 \
$S_1 = 7$	(A1)
$S_2 = 10$	(A1)
$u_1 = 7$	A1
Note: Must be made clear that this is the first term $\frac{1}{2}$	/N 41\
$u_2 = 3$ $d = -4$	(M1)
a = -4	A1 [5 marks]
OR	
$S_n = \frac{n}{2} (2a + (n-1)d) = \frac{d}{2} n^2 + \left(a - \frac{d}{2}\right) n$	(M1)(A1)
_	(1011)(/~(1)
Comparing coefficients:	
$\frac{d}{2} = -2 \qquad \text{and} \qquad a - \frac{d}{2} = 9$	(M1)
d = -4	A1
a = 7	A1
	[5 marks]
	Total [5 marks]
0 a Gradient of AB = $\frac{8-4}{2-0}$	(M1)
= 2	(A1)
1	(A1)
So gradient of perpendicular line is $-\frac{1}{2}$ So equation is $y - 3 = -\frac{1}{2}(x - 1)$	M1A1
(y = -0.5x + 3.5)	[5 marks
b Equation of AB is $y = 2x + 4$	(A1)
Solve simultaneously to find point of intersection	(M1)
(-0.2, 3.6)	A1
(,,)	[3 marks]
	[5 marks]

11 a

Using cosine rule:

$$b^2 = 10^2 + 20^2 - 2 \times 10 \times 20 \times \cos 50$$
 M1

(= 242.88 ...)

$$c = 15.6 \text{ km}$$
 A1

[3 marks]

b Using sine rule

$$\frac{\sin C}{10} = \frac{\sin 50}{15.6} \tag{M1}$$

$$C = \sin^{-1}\left(\frac{10\sin 50}{15.6}\right) = 29.4^{\circ}$$

Note – could also be found using the cosine rule

Rearing is 360 – 10 – 294 – 321

Bearing is 360 - 10 - 29.4 = 321A1

[3 marks]

Total [6 marks]

12 a C = 8 + 0.05x

b
$$C = \begin{cases} 10 & 0 < x \le 100 \\ 0.2x - 10 & x > 10 \end{cases}$$
 [1 mark]

[2 marks] Intersects first branch at x = 40

c Intersects first branch at x = 40 A1

Intersects second branch at x = 120 A1

So cheaper for 40 < x < 120 A1

[3 marks]
Total [6 marks]

13 The midpoint of AB is (2, 3) (A1)

The gradient of AB is 1

Therefore, the equation of the perpendicular bisector is

(A1)

 $y = 5 - x \tag{A1}$

Then EITHER perpendicular bisector of BC is $y = \frac{1}{2}x$ OR perpendicular bisector of AC is y = 2x - 5 A2 Intersecting any two perpendicular bisectors

$$\left(\frac{10}{3}, \frac{5}{3}\right) \approx (3.33, 1.67)$$
 A1

Total [7 marks]

Practice Set A: Paper 2 Mark scheme

1 a 4000 A1 [1 mark]

b $3x^2 - 12x + 9$ (M1)A1

Note: Award M1 for at least one correct term.

[2 marks]

c Rate of change of number of subscribers A1

[1 mark]

d From GDC: x = 3 or x = 1 A1A1 [2 marks]

e f'(x) > 0 (M1) x > 3 or x < 1

[2 marks]

f

Correct shape, with no negative *x* values

Intercept labelled at y = 4 A1 Max labelled at (1, 8), min at (3, 4) A1

g Solving $x^3 - 6x^2 + 9x + 4$ graphically or using polynomial solver A1

[2 marks]

Total [13 marks]

Α1

A1

2 a Using a lattice diagram or other systematic list (M1)

S	2	3	4	5	6	7	8
$\mathbf{P}(S=s)$	1/16	$\frac{2}{16}$	$\frac{3}{16}$	4/16	$\frac{3}{16}$	$\frac{2}{16}$	$\frac{1}{16}$

b $E(S) = 2 \times \frac{1}{16} + 3 \times \frac{2}{16} \dots$ [2 marks]

= 5 $\mathbf{c} \quad P(X > 4) = \frac{10}{16}; \ P(X > 6) = \frac{3}{16}$ $P(X > 6 \mid X > 4) = \frac{3}{16} \div \frac{10}{16} = \frac{3}{10}$ M1A1

[3 marks]

d	If W	is the	winnings	then:

3 a

b

C

d

e

11	, is the w	mmings men	L •			
	w	-1	k			
]	P(W=w)	$\frac{6}{16}$	$\frac{10}{16}$		M1A1	
E($W) = -\frac{6}{16}$	$+\frac{10k}{16}$			A1	
	10	e to be fair, E	$\mathcal{L}(W) = 0$ so		M1	
	$\frac{0k}{6} = \frac{6}{16}$,				
	- 0.6				A1	
						[5 marks]
					Total	[12 marks]
i	16.1				A1	
ii	1.73				A1	
iii	-0.901				A1	
	Strong n	egative corre	elation		A1	
						[4 marks]
i	8				A1	
ii	6				A1	<i>[</i> 2
i	$y = \begin{cases} -0.3 \\ -0.0 \end{cases}$	361x + 18.8 3686x + 15.1	$x < 8$ $x \ge 10$		M1A1A1	[2 marks]
ii				nd of improving in both		
		the season			A1	
	The mod	lulus of the fi	irst coefficie	nt is larger, so there is		
	greater i	mprovement	each week in	n the pre-competition training	A1	
0	261 7	10.0 16.6	· · · · ·		N 44 A 4	[5 marks]
-0	.361 × / +	$18.8 \approx 16.6$	(minutes)		M1A1	[] mankal
Th	is is an ex	ample of ext	ranolation v	which is not generally valid	A1	[2 marks]
1 11	15 15 411 67	umple of ext	rapolation, v	vinen is not generally valid	7 (1	[1 mark]
					Total	[14 marks]
i	1000 + 5	× 50 = 1250			(M1)A1	

4	a	i	$1000 + 5 \times 50 = 1250$	(M1)A1
		ii	$1000 \times 1.04^5 = 1216.65$	(M1)A1
			Note: May be done using TVM so no working shown	

Note: May be done using TVM so no working shown.

eg stating principal value of 1000 and final value of 1250.

[4 marks] **b** 4.56% (M1)A1 Note: award M1 for any evidence of using TVM package,

[2 marks] **c** Solving $1000 + 50n = 1000 \times 1.04^n$ (M1)Evidence of graphical, tabular or trial and error approach (M1) $n \ge 12$

Note: do not accept non-integer values.

[3 marks] **d** Effective interest rate = 1.5%(A1)Evidence of TVM or $1400 = 1000 \times 1.015^{n}$ (M1)22.599 years (A1) So needs 23 years Α1

> [4 marks] Total [13 marks]

> > [1 mark]

Α1

a From GDC, 0.0478 A1

b Using inverse normal distribution M1 138(.4465) Α1 [2 marks]

	c	If $X =$ "number of people with score ≥ 150 out of 5"	(B. 4.4.) (B. 4.)	
		$X \sim B(5, 0.0478)$ $P(X \ge 2) = 1 - P(X \le 1)$	(M1)(A1)	
		= 0.0207	(M1) A1	
		0.0207	, (1	[4 marks]
	d	We need one success in the first four, then a success	(M1)	
		If $Y =$ "number of people with score ≥ 150 out of 4"		
		$Y \sim B (4, 0.0478)$	(0.44)	
		Required probability is $P(Y=1) \times 0.0478$ = 0.00789	(M1) A1	
		- 0.00769	AI	[3 marks]
	e	If A is the score of a member then we require		[
		P(A > 170 A > 150)	(M1)	
		$=\frac{P(A > 170 \cap A > 150)}{P(A > 150)}$		
		$= \frac{P(A > 170)}{P(A > 150)}$ (OR use a Venn diagram)	(M1)	
		$=\frac{0.0107}{0.0107}$	45	
		$=\frac{0.0107}{0.05}$	(M1)	
		Note: Award M1 for evidence of using GDC to calculate any		
		probability from a N(100, "their value") distribution, even outside		
		of context of conditional probability. = 0.214	A1	
		- 0.21 4	AI	[4 marks]
	f	That the membership of the high intelligence society is representative	:	[
		of the whole population	R1	
			Tr , 1	[1 mark]
			Total	[15 marks]
6	a	1 diameter of 2 cm and 2 radii each of 1 cm	R1	
				[1 mark]
	b	Total area of metal in each repeating unit = $2 \times \pi \times 1^2 = 2\pi$	M1A1	
		If side of the square is x then $x^2 + x^2 = 16$	M1	
		So proportion of box filled is $\frac{2\pi}{8} = \frac{\pi}{4}$	A1	[1 manla]
	c	for example, that the extra space at the edge of the box is negligible	R1	[4 marks]
		Note: Accept any reasonable criticism of the model.		
				[1 mark]
	d	Diagonal is 4 and width is 2	A1	
		So height is $\sqrt{4^2 - 2^2} = \sqrt{12}$	M1A1	
		Ratio is $\frac{2 \times \pi \times 1^2}{2\sqrt{12}} = \frac{\pi}{\sqrt{12}}$	M1A1	
		$2\sqrt{12}$ $\sqrt{12}$		[5 1 1
	P	$\sqrt{12} < \sqrt{16} = 4$	R1	[5 marks]
		Therefore method 2 can pack more rods	A1	
		Note: Do not award R0A1		
				[2 marks]
				[13 marks]

Practice Set B: Paper 1 Mark scheme

6	a	$H_0: \mu_G = \mu_N$	A1	
		$H_1: \mu_G < \mu_N$	A1	[2 marks]
	b	0.0986	A2	50 1 7
	c	0.0986 < 0.1	R1	[2 marks]
		So reject H ₀ . There is sufficient evidence at the 10% level that		
		Nya Stan is warmer	A1	
		Note: Award R1 for correct comparison of their <i>p</i> -value. Must have conclusion in context for A1. Do not award R0A1.		
				[2 marks]
	d	The population temperatures are normally distributed The population variances are equal	A1 A1	
		The population variances are equal	7 (1	[2 marks]
			Total	[8 marks]
7	ar	= 13.5(1)	A1	
	a ($\left(\frac{1-r^3}{1-r}\right) = 74(2)$	A1	
	3	(1-r) viding their (1) by (2) or substituting:	(M1)	
			(1111)	
	1	$\frac{1-r)}{-r^3} = \frac{13.5}{74}$		
		$r^3 - 74r^4 = 13.5 - 13.5r^3$		
		$r^4 - 87.5r^3 + 13.5 = 0$	M1	
		te: Award M1 for rearranging to a quartic equation $p(r) = 0$		
	<i>r</i> =	$= \frac{3}{4} \text{ (reject } r = 1\text{)}$	A1	
	<i>a</i> =	= 32	A1	
			Ιοιαι	[6 marks]
8	a	N = 30		
		I% = 2.5 $PV = 0$		
		PMT = -6000		
		P/Y = C/Y = 1	(M1)(A1)	
		Note: Award M1 for attempt to use financial app; A1 for all values correct.		
		FV = £309263416.22	A1	
		2 5		[3 marks]
	b	$I\% = \frac{2.5}{12}$		
		PV = 309736.06 PMT = 750		
		FV = 0		
		P/Y = C/Y = 1	(M1)(A1)	
		Note: Award M1 for attempt to use financial app; A1 for all		
		values correct. $N = 263.8$		
		So, 264 months or 22 years	A1	
			Total	[3 marks] [6 marks]
9	a	Attempt to solve $-3x^2 + 5x + 2 = 0$	(M1)	
		$x = 2\left(\text{reject} - \frac{1}{3}\right)$	(A1)	
		So 200 items	A1	
			ΛΙ	[3 marks]

	b	$P(x) = \int -3x^2 + 5x + 2 \mathrm{d}x$						(M1)	
		Note: Award M1 for at $= -x^3 + 2.5x^2 + 2x + c$	tempt a	t integra	tion			A1A1	
		Note: Award A1 for an correct including cons				; second	A1 for all		
		$2 = -1^{3} + 2.5 \times 1^{2} + 2 \times 1^{2}$ $c = -1.5$		megran	<i>J</i> 11			M1	
		So, $P(x) = -x^3 + 2.5x^2$	+2x-1	.5				A1	<i></i>
								Total	[5 marks] ! [8 marks]
10	a	H ₀ : Waiting times follows: H ₁ : Waiting times do n	•	-			1	A1 A1	[2 marks]
	b	Waiting time/min	< 5	5-10	10-15	15–20	> 20		
		Expected frequency	5.34	14.85	25.10	22.01	12.69	A2	
		Note: Award A2 for al A0 otherwise.	l four co	orrect; A	1 for two	or thre	e correct;		
		Ao otherwise.							[2 marks]
	c	v = 4 p-value = 0.0871						(A1) A2	
									[3 marks]
	d	0.0871 > 0.05 So do not reject H ₀ . Th	nere is in	nsufficie	nt evidei	nce to re	eject the	R1	
		manager's claim						A1	
		Note: Award R1 for co conclusion in context		-		-	e. Musi nave		
								Total	[2 marks] [[9 marks]
11	a	$30 = \frac{2\pi}{b}$ so $b = \frac{\pi}{15}$						A1	
		When $t = 0$, $h = 2$ so 2	$= a \cos$	0 + c				(M1)	
		2 = a + c When $t = 15$, $h = 122$ s 122 = c - a	o 122 =	$a\cos\left(\frac{\pi}{1}\right)$	$\left(\frac{\tau}{5} \times 15\right)$	- <i>c</i>		(M1)	
		Solving simultaneousl	y, $a = -0$	60, c = 6	2			A1A1	[5 manka]
	b	$50 = -60\cos\left(\frac{\pi}{15}t\right) + \epsilon$	62					(M1)	[5 marks]
		From GDC, $t = 6.54, 2$	3.5					(A1)	
		So time above 50 m is	16.9 mii	nutes				A1	[3 marks]
								Total	l [8 marks]

12 a 0.1 + a + b + 0.2 + 0.15 = 1M1A1 a + b = 0.55AG [2 marks] **b** Game fair so E(X) = 2 $(0 \times 0.1) + a + 2b + (3 \times 0.2) + (4 \times 0.15) = 2$ (M1)a + 2b = 0.8Α1 Solving simultaneously with a + b = 0.55, a = 0.3, b = 0.25Α1 [3 marks] **c** Will make loss if $X_1 + X_2 < 4$ (M1)(0, 0), (1,1)(0,1), (0,2), (0,3), (1,2) AND REVERSES $P(X_1 + X_2 < 4) = 0.1^2 + 0.3^2$ $+ 2 (0.1 \times 0.3 + 0.1 \times 0.25 + 0.1 \times 0.2 + 0.3 \times 0.25)$ M1 = 0.4Α1 [3 marks]

Total [8 marks]

Practice Set B: Paper 2 Mark scheme

1 a i Systematic sampling A1

ii Not all samples are possible, eg adjacent people on the list cannot be chosen

[2 marks]

A1

b i Men = $\frac{46}{46 + 63} \times 12 = 5.06$ M1

So, 5 men A1

ii Simple random sampling A1

iii Uses opportunity sampling rather than simple random sampling to select the participants in each group

A1

[4 marks]

 $\mathbf{c} \quad r = 0.787$

Reasonable positive correlation between height and weight; as one increases, so does the other

A1 [2 marks]

d i w = 0.806h - 70.0 (M1)

 $w = 0.806 \times 140 - 70.0 = 42.8 \,\mathrm{kg}$

ii $w = 0.806 \times 170 - 70.0 = 67.0 \,\mathrm{kg}$

[3 marks]

e 140 cm is significantly outside the range of the given data so extrapolation of the relationship makes the prediction unreliable A1

170 cm is within the range of the data and reasonable positive correlation so prediction reasonably reliable

A1 [2 marks]

f for example, take a larger sample; create separate regression lines for men and women

A1A1

[2 marks]

Total [15 marks]

2 a Midpoint of (1, 8) and (5, 2) = $\left(\frac{1+5}{2}, \frac{8+2}{2}\right)$ = (3,5)

Gradient of line segment from (1, 8) to (5, 2) = $\frac{2-8}{5-1} = -\frac{3}{2}$

So gradient of perpendicular bisector is $\frac{2}{3}$ (M1)

Note: Award M1 for gradient of perpendicular = $-\frac{1}{\text{their } m}$

Equation of perpendicular bisector: $y - 5 = \frac{2}{3}(x - 3)$

b

$$2x - 3y = -9$$

[4 marks]

S = P S = P S = P S = P S = O

$$R\hat{P}Q = 125^{\circ} \text{ so } P\hat{R}Q = 180 - 125 - 12 = 43^{\circ}$$

By sine rule
$$\frac{PR}{\sin 12} = \frac{50}{\sin 43}$$
 (M1)

$$PR = \frac{50 \sin 12}{\sin 43} = 15.24283 \dots$$

$$h = PR \sin 55 = 12.5 \,\mathrm{m}$$
 (M1)A1

[5 marks]

$$A\hat{B}C = 40 + 35$$

$$= 75^{\circ}$$
A1
$$[2 marks]$$

d By cosine rule, $AC = \sqrt{20^2 + 30^2 - 2 \times 20 \times 30 \cos 75}$ (M1A1)

Note: Award M1 for attempt to use cosine rule = 31.5 km

e By sine rule, $\frac{\sin B\hat{C}A}{20} = \frac{\sin 75}{31.455}$ (M1)

Note: Award M1 for attempt to use sine rule

$$B\hat{C}A = 37.9^{\circ}$$

So bearing =
$$360 - 125$$
 – their $B\hat{C}A$ (M1)
= 197°

[4 marks] Total [18 marks]

A1

3 a
$$A = \frac{1}{2} [2.3 + 2.3 + 2(3.5 + 4.3 + 4.7 + 4.7 + 4.3 + 3.5)]$$
 M1A1

$$=27.3\,\mathrm{m}^2$$

[3 marks]
Since the curve boyes out the transzia are all under the curve

b Since the curve bows out, the trapezia are all under the curve... R1
... so this gives an underestimate A1

... so this gives an underestimate A1
Note: Do not award R0A1

[2 marks]

c $h = ax^2 + bx + 2.3$ A1 Substitute in any other two pairs of data: M1

3.5 = 1²a + 1b + 2.34.3 = 2²a + 2b + 2.3

Solve simultaneously to give a = -0.2, b = 1.4

d Finds max point of their quadratic from GDC[4 marks](M1)

Max height is $h = 4.75 \,\text{m}$ A1 [2 marks]

e
$$A = \int_0^7 -0.2x^2 + 1.4x + 2.3 \, dx$$
 (M1)

 $=\frac{413}{15}$ A1

f % error = $\frac{\frac{413}{15} - 27.3}{\frac{413}{15}} \times 100$ [2 marks]

[1 mark]

Total [16 marks]

4	a	$X \sim B (10, 0.04)$ P(X = 2) = 0.0519	(M1) A1	
				[2 marks]
	b	$P(X \ge 2) = 1 - P(X \le 1)$ = 0.0582	(M1) A1	
		- 0.0362	AI	[2 marks]
	c	i $0.04n = 2$	(M1)	
		n = 50	A1	
		ii $Var(X) = 50 \times 0.04 \times 0.96$ = 1.92	(M1) A1	
		-1.92	AI	[4 marks]
	d	$Y \sim B(5, 0.0582)$	(M1A1)	[
		Note: Award M1 for use of binomial with $n = 5$		
		$P(Y > 1) = 1 - P(Y \le 1)$	(M1)	
		=0.0301	A1	[1 m antal
	e	$P(X \ge 1) > 0.95$		[4 marks]
		1 - P(X = 0) > 0.95	(M1)	
		P(X=0) < 0.05	,	
		$0.96^n < 0.95$	M1	
		n > 73	A1	
		that is, smallest number of calls is $n = 74$	A1	<i>.</i>
			Total	[4 marks] [16 marks]
5	9	$\pi r^2 h + \frac{2}{3} \pi r^3 = 300$	M1A1	
	а	Note: Award M1 for correct volume of cylinder or hemisphere	17117 (1	
		$3\pi r^2 h + 2\pi r^3 = 900$	A1	
		$3\pi r^2 \ h = 900 - 2\pi r^3$	A1	
		$h = \frac{900 - 2\pi r^3}{3\pi r^2}$	۸	
		$n - \frac{1}{3\pi r^2}$	AG	
			(N	[4 marks]
	b	$A = 2\pi r h + \pi r^2 + 2\pi r^2$	(M1A1)	
		$=2\pi r \left(\frac{900-2\pi r^3}{3\pi r^2}\right) + 3\pi r^2$	M1	
		$=\frac{600}{r}-\frac{4}{3}\pi r^2+3\pi r^2$		
		$=600r^{-1}+\frac{5}{3}\pi r^2$	A1A1	
		Note: Award A1 for $ar^{-1} + cr^2$; second A1 for all correct		
				[5 marks]
	c	i Attempt to find minimum point of $y = 600x^{-1} + \frac{5}{3}\pi x^2$ from GDC		_
		or otherwise 3	(M1)	
		$A = 233 \text{ cm}^2$	A1	
		ii $r = 3.86 \text{ cm}$ $900 - 2\pi r^3$	A1	
		iii Substituting their r into $h = \frac{900 - 2\pi r^3}{3\pi r^2}$	M1	
		h = 3.86 cm	A1	[5 marks]
	d	For example, may want taller and thinner design for aesthetic reasons,		[5 marks]
		or for ergonomic reasons	A1	
				[1 mark]
			Total	[15 marks]

Practice Set C: Paper 1 Mark scheme

1	a	$\frac{18^2 \pi}{2} \times 83$	(M1)
		2 $4.22 \times 10^4 \text{cm}^3$	A1A1
	ı.		[3 marks]
	D	$\frac{4}{3}\pi r^3 = \text{their volume}$ $2 \text{ volume} \times 3$	M1
		$r^3 = \frac{\text{volume} \times 3}{4\pi}$	(M1)
		$r = 21.6 \mathrm{cm}$	A1 [3 marks]
			Total [6 marks]
2	a	$9.1^2 = 6.8^2 + 4.7^2 - 2(6.8)(4.7)\cos B$	(M1)
		$\cos B = -0.227$ $B = 103^{\circ}$	(A1) A1
		1	[3 marks]
	b	$\frac{1}{2}$ (6.8)(4.7) sin (their <i>B</i>)	M1
		15.6 cm ²	A1 [2 marks]
			Total [5 marks]
3	a	(90, 88)	(M1)
		200 - 88 = 112	A1 <i>[2 marks]</i>
	b	15% of 200 = 30	(M1)
		Line at 170 on graph crosses at (104, 170) 104 g	A1 A1
			[3 marks] Total [5 marks]
4		11 (40 20 (7) (40 20 (14) 10)	
4	a	Use $640 = \frac{20}{2} (7 + u_{20})$ or $640 = \frac{20}{2} (14 + 19d)$	(M1) A1
	b	$19d = 50 \text{ or } u_{39} - u_{20} = u_{20} - u_{1}$	[2 marks] (M1)
	~	107	A1
			[2 marks] Total [4 marks]
5	a	$\frac{\theta}{360} \times \pi \times 10^2 = 75$	M1
		360 $\theta = 85.9$	A1
			[2 marks]
	b	$\frac{\text{their }\theta}{360} \times 2\pi \times 10$	M1
		+20 35 cm	(M1) A1
			[3 marks]
			Total [5 marks]
6	a	midpoints: 10, 13.5, 17.5, 22.5, 26.5 mean = 17.8	(M1) A1
		SD = 5.40	A1
	b	"17.8" × 2.54	[3 marks] (M1)
		mean = 45.3 variance = 188	A1 A1
		variance 100	[3 marks]
			Total [6 marks]

7	a	Attempt to find three simultaneous equations	M1	
,	••	•	1711	
		$\begin{cases} 512a + 64b + 8c = 1890\\ 1000a + 100b + 10c = 1690\\ 3375a + 225b + 15c = 703 \end{cases}$		
		All three equations correct $a = 1.31, b = -57.3, c = 610$	A1 A1	
		u = 1.51, v = -57.5, c = 010	AI	[3 marks]
	b	Attempt to solve $ax^3 + bx^2 + cx = 1720$	M1	
		4.6 cm, 9.7 cm or 29.4 cm	A1	
		E' 1 1/(20)	N 44	[2 marks]
	c	Find $V(20)$	M1	
		V = -240; No, model predicts negative volume	A1	
			Total	[2 marks]
			Totat	[7 marks]
8	a	A(1, 0), B(4, 0)	A1A1	
		N	(1) (1)	[2 marks]
	b	Maximum point marked on a sketch 1.14 m	(M1) A1	
			7 (1	[2 marks]
	c	$\int_{1}^{4} 0.8x (4-x) dx \text{ (condone lack of limits)}$	M1	
		$= 2.27 \mathrm{m}^2$	A1	[2 marks]
			Total	[6 marks]
9	a	Using TVM solver: $PV = 50000$, $PMT = -1000$, $I = 2.4$, $P/Y = C/Y = 12$		
		[to get $N = 52.73$]	M1	
		53 months (4 years and 5 months)	A1	<i>[</i> 2
	b	Change <i>N</i> to 48 and find PMT	M1	[2 marks]
	D	\$1093.51	A1	
				[2 marks]
	c	In part a : Amount left after 52 payments of \$1000	M1	
		(FV = 731.56)	A 4	
		Total paid = \$52731.56	A1	
		In part b : Total paid = $48 \times 1093.51 = 52488.48 , which is less	A1	[2 manka]
			Total	[3 marks] [7 marks]
		dv		[]
10		$\frac{\mathrm{d}y}{\mathrm{d}x} = 6x^2 - 2ax + 1$	(M1)	
		24 - 4a + 1 = 0	M1	
		$a = \frac{25}{4}$	A1	
		a = 4		
		$-6 = 16 - 4 \left(\text{their } \frac{25}{4} \right) + 2 + 2b$	M1A1	
		b = 0.5	A1 Total	16 mantal
			Totat	[6 marks]
11	a	increases: 8, 10, 7, 8, 7	(M1)	
		average = 8	A1	
				[2 marks]
	b	26 + 11 × "8"	M1	
		114	A1	[] marks]
	c	y = 8.06x + 18.5	M1	[2 marks]
	_	115	A1	
				[2 marks]
			Total	[6 marks]

12 a 20 and 30	b Any one of 31, 32, 33, 34 The gradient is zero somewhere between 30 and 35 c Minimum at $(v, 4.2)$ where $v \in \{31, 32, 33, 34\}$ Decreases from 4.6 to 4.2, then increases 13 a $H_0: \mu_1 = \mu_2: H_1: \mu_1 \neq \mu_2$ A1 $\frac{[2 \text{ marks}]}{[2 \text{ marks}]}$ b $\frac{\mathbf{A}}{\mathbf{B}}$ $\frac{\mathbf{B}}{\mathbf{C}}$ $\frac{\mathbf{C}}{\mathbf{D}}$ $\frac{\mathbf{E}}{\mathbf{F}}$ $\frac{\mathbf{G}}{\mathbf{G}}$ $\frac{\mathbf{H}}{\mathbf{H}}$ 13 a $H_0: \mu_1 = \mu_2: H_1: \mu_1 \neq \mu_2$ A1 [1 mark $\frac{\mathbf{F}}{\mathbf{B}}$ c $\overline{\mathbf{x}} = -1.01, t = -1.72$ (evidence of using t -test) $p = 0.130 > 0.05$ Insufficient evidence that the means are different [3 marks] Total [6 marks] 14 $P(A \cap B) = P(A \mid B)P(B) \left[-\frac{2}{3}P(A) \right]$ Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3}P(A)$ A2 P(A) = $\frac{1}{10}$ (A1) P(A \cap B) = $\frac{1}{15}$ A1 Total [6 marks] Alternative: Draw a Venn diagram with $\frac{1}{30}$, $x, \frac{1}{6} - x$ M1A1	12 a										
b Any one of 31, 32, 33, 34 The gradient is zero somewhere between 30 and 35 [2 marks, section 1] [2 marks, section 2] [3] [4] [5] [6] [6] [7] [7] [8] [8] [8] [1] [1] [1] [1] [2 marks, section 2] [1] [1] [2 marks, section 3] [2 marks, section 4] [1] [1] [1] [2 marks, section 3] [1	b Any one of 31, 32, 33, 34 The gradient is zero somewhere between 30 and 35 [2 marks] c Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ Decreases from 4.6 to 4.2, then increases A1 [2 marks] A2 [2 marks] A3 [2 marks] A4 [3 marks] A5 [4 marks] A6 [5 marks] A7 [6 marks] A7 [7 marks] A8 [7 marks] A9 [8 marks] A1 [9 marks] A1 [1 marks] A2 [1 marks] A3 [1 marks] A4 [1 marks] A5 [2 marks] A6 [1 marks] A7 [1 marks] A8 [2 marks] [3 marks] [4 marks] [5 marks] [6 marks] [7 marks] [7 marks] [8 marks] [8 marks] [9 marks] [9 marks] [9 marks] [1 marks] [2 marks] [2 marks] [3 marks] [4 marks] [5 marks] [6 marks] [7 marks] [8 marks] [8 marks] [9 marks] [9 marks] [1 marks] [2 marks] [1 marks] [2 marks] [1 marks] [2 marks] [1 marks] [2 marks] [1 marks] [1 marks] [1 marks] [2 marks] [1 marks] [2 marks] [2 marks] [2 marks] [3 marks] [4 marks] [4 marks] [5 marks] [6 marks] [6 marks] [7 marks] [8 marks] [9 marks] [9 marks] [9 marks] [1 marks] [2 marks] [2 marks] [3 marks] [4 marks] [4 marks] [5 marks] [6 marks] [6 marks] [7 marks] [8 marks] [8 marks] [8 marks] [8 marks] [9 marks] [9 marks] [9 marks] [1 marks] [2 marks] [2 marks] [3 marks] [4 marks] [4 marks] [4 marks] [5 marks] [6 marks] [6 marks] [7 marks] [8 marks] [8 marks] [8		20 and 1	30							A1	
The gradient is zero somewhere between 30 and 35 [2 marks, c Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ Decreases from 4.6 to 4.2, then increases [2 marks, Total [5 marks, Total [5 marks]] 13 a $H_0: \mu_1 = \mu_2: H_1: \mu_1 \neq \mu_2$ A1 [1 mark, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A1 [2 marks, Total [5 marks, Minimum at (v, 4.2) marks, Minimum at (v, 4.2) marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A1 [2 marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A1 [2 marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A1 [2 marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A1 [2 marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A1 [2 marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A1 [2 marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A1 [2 marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A1 [2 marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A1 [2 marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A1 [2 marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A1 [2 marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A1 [2 marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A1 [2 marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A1 [2 marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A1 [2 marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A1 [2 marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A1 [2 marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A1 [2 marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A1 [2 marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A1 [2 marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A1 [2 marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A1 [2 marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A1 [2 marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A2 [3 marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A2 [4 marks, Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ A2 [5 marks, Minimum at (v, 4.2) wher	The gradient is zero somewhere between 30 and 35 [2 marks] c Minimum at (v, 4.2) where $v \in \{31, 32, 33, 34\}$ Decreases from 4.6 to 4.2, then increases [2 marks] Total [5 marks] Total [5 marks] 13 a H_0 : $\mu_1 = \mu_2$; H_1 : $\mu_1 \neq \mu_2$ A1 [2 marks] b $A B C D E F G H$ [1 mark] c $\overline{x} = -1.01$, $t = -1.72$ (evidence of using t -test) $p = 0.130 > 0.05$ Insufficient evidence that the means are different [3 marks] Total [6 marks] 14 $P(A \cap B) = P(A \mid B)P(B) \left[-\frac{2}{3}P(A) \right]$ Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3}P(A)$ $P(A \cap B) = \frac{1}{15}$ A1 Total [6 marks] Alternative: Draw a Venn diagram with $\frac{1}{30}$: $x, \frac{1}{6} - x$ M1A1										[1 m	ark]
$ \begin{array}{c} \text{ C } & \text{Minimum at } (v,4.2) \text{ where } v \in \{31,32,33,34\} \\ & \text{ Decreases from 4.6 to 4.2, then increases} \end{array} \right. \\ & \text{ A1} \\ & $	c Minimum at $(v, 4.2)$ where $v \in \{31, 32, 33, 34\}$ Decreases from 4.6 to 4.2, then increases 13 a $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 14 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 15 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 16 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 17 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 18 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 19 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 10 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 11 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 12 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 13 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 14 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 15 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 16 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 17 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 18 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 19 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 10 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 10 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 11 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 12 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 13 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 14 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 15 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 16 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 17 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 18 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 19 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 10 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 11 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 12 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 13 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 14 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 15 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 16 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 17 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 18 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 19 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 19 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 10 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 11 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 12 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 13 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 14 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 15 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 16 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 17 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 18 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 19 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 19 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 10 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 11 $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ 12 $H_0: \mu_1 = \mu_2; H_1$	b	Any on	e of 31, 3	2, 33, 34						A1	
c Minimum at $(v, 4.2)$ where $v \in \{31, 32, 33, 34\}$ A1 Decreases from 4.6 to 4.2, then increases $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	c Minimum at $(\nu, 4.2)$ where $\nu \in \{31, 32, 33, 34\}$ Decreases from 4.6 to 4.2, then increases [2 marks Total [5 marks] 13 a $H_0: \mu_1 = \mu_2: H_1: \mu_1 \neq \mu_2$ A1 [1 mark		The gra	idient is z	zero some	ewhere b	etween 3	30 and 35	5		R1	
Decreases from 4.6 to 4.2, then increases 2 marks, Total 5 marks, 13 a H_0 : $\mu_1 = \mu_2$: H_1 : $\mu_1 \neq \mu_2$ A1 [1 mark, b A B C D E F G H -1.1 0.7 -1.1 -3.0 2.0 -1.3 -1.5 -2.8 M1A1 c $\overline{x} = -1.01, t = -1.72$ (evidence of using t-test) (M1) $p = 0.130 > 0.05$ A1 R1 [3 marks, Total 6 marks, Total 6 marks, 14 $P(A \cap B) = P(A \mid B)P(B) \left[= \frac{2}{3}P(A) \right]$ M1 M1 $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3}P(A)$ A2 $P(A \cap B) = \frac{1}{10}$ (A1) $P(A \cap B) = \frac{1}{15}$ A1 Total 6 marks, Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1	Decreases from 4.6 to 4.2, then increases [2 marks, Total [5 marks, Total [5 marks]] 13 a H_0 : $\mu_1 = \mu_2$; H_1 : $\mu_1 \neq \mu_2$ A1 [1 mark										[2 ma	rks]
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	13 a H_0 : $\mu_1 = \mu_2$; H_1 : $\mu_1 \neq \mu_2$ A1 [I marks] b $A B C D E F G H$ -1.1 0.7 -1.1 -3.0 2.0 -1.3 -1.5 -2.8 [I marks] c $\overline{x} = -1.01, t = -1.72$ (evidence of using t -test) $p = 0.130 > 0.05$ Insufficient evidence that the means are different [I marks] [I m	c	Minimu	ım at (v,	4.2) when	re $v \in \{3\}$	1, 32, 33,	34}			A1	
13 a $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ b	Total [5 marks] 13 a H_0 : $\mu_1 = \mu_2$; H_1 : $\mu_1 \neq \mu_2$ A1 b $A B C D E F G H$ -1.1 0.7 -1.1 -3.0 2.0 -1.3 -1.5 -2.8 M1A1 c $\overline{x} = -1.01, t = -1.72$ (evidence of using t -test) $p = 0.130 > 0.05$ Insufficient evidence that the means are different [3 marks] 14 $P(A \cap B) = P(A \mid B)P(B) \left[= \frac{2}{3}P(A) \right]$ Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3}P(A)$ $P(A \cap B) = \frac{1}{15}$ A1 Total [6 marks] Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1		Decreas	ses from	4.6 to 4.2	2, then in	creases				A1	
13 a $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ b A B C D E F G H -1.1 0.7 -1.1 -3.0 2.0 -1.3 -1.5 -2.8 M1A1 [2 marks, M1] c $\overline{x} = -1.01, t = -1.72$ (evidence of using t -test) $p = 0.130 > 0.05$ Insufficient evidence that the means are different [3 marks, Total [6 marks, M1] Use $P(A \cap B) = P(A \mid B)P(B) \left[= \frac{2}{3}P(A) \right]$ Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3}P(A)$ $P(A \cap B) = \frac{1}{15}$ A1 Total [6 marks, M1] A2 Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1	13 a $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ A1 [I mark] b A B C D E F G H -1.1 0.7 -1.1 -3.0 2.0 -1.3 -1.5 -2.8 M1A1 [2 marks] (M1) $p = 0.130 > 0.05$ Insufficient evidence that the means are different [3 marks] Total [6 marks] 14 $P(A \cap B) = P(A \mid B)P(B) \left[= \frac{2}{3}P(A) \right]$ Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ M1 $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3}P(A)$ A2 $P(A \cap B) = \frac{1}{15}$ A1 Total [6 marks] Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1										[2 ma	rks]
13 a $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ b A B C D E F G H -1.1 0.7 -1.1 -3.0 2.0 -1.3 -1.5 -2.8 M1A1 (2 marks) (M1) $p = 0.130 > 0.05$ Insufficient evidence that the means are different (M1) $P(A \cap B) = P(A \mid B)P(B) \left[= \frac{2}{3}P(A) \right]$ Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3}P(A)$ $P(A \cap B) = \frac{1}{15}$ A1 Total [6 marks] A1 A1 Total [6 marks] A1 Total [6 marks]	13 a $H_0: \mu_1 = \mu_2; H_1: \mu_1 \neq \mu_2$ A1 [I mark] b A B C D E F G H -1.1 0.7 -1.1 -3.0 2.0 -1.3 -1.5 -2.8 M1A1 [2 marks] (M1) $p = 0.130 > 0.05$ Insufficient evidence that the means are different [3 marks] Total [6 marks] 14 $P(A \cap B) = P(A \mid B)P(B) \left[= \frac{2}{3}P(A) \right]$ Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ M1 $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3}P(A)$ A2 $P(A \cap B) = \frac{1}{15}$ A1 Total [6 marks] Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1										Total [5 ma	rks]
b A B C D E F G H -1.1 0.7 -1.1 -3.0 2.0 -1.3 -1.5 -2.8 M1A1 [2 marks, M1A] c $\bar{x} = -1.01, t = -1.72$ (evidence of using t-test) $p = 0.130 > 0.05$ Insufficient evidence that the means are different [3 marks, Total [6 marks] 14 $P(A \cap B) = P(A \mid B)P(B) \left[= \frac{2}{3}P(A) \right]$ Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3}P(A)$ $P(A \cap B) = \frac{1}{15}$ A1 Total [6 marks, M1A] A2 Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1	b A B C D E F G H -1.1 0.7 -1.1 -3.0 2.0 -1.3 -1.5 -2.8 M1A1 [2 marks] c $\overline{x} = -1.01, t = -1.72$ (evidence of using t-test) $p = 0.130 > 0.05$ Insufficient evidence that the means are different [3 marks] 14 $P(A \cap B) = P(A \mid B)P(B) \left[= \frac{2}{3}P(A) \right]$ Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3}P(A)$ $P(A \cap B) = \frac{1}{15}$ A1 Total [6 marks] Alternative: Draw a Venn diagram with $\frac{1}{30}$; $x, \frac{1}{6} - x$ M1A1										2	_
b A B C D E F G H -1.1 0.7 -1.1 -3.0 2.0 -1.3 -1.5 -2.8 M1A1 [2 marks, M1A] c $\overline{x} = -1.01, t = -1.72$ (evidence of using t-test) $p = 0.130 > 0.05$ Insufficient evidence that the means are different [3 marks, Total [6 marks, M1] Use $P(A \cap B) = P(A \mid B)P(B) \left[= \frac{2}{3}P(A) \right]$ Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3}P(A)$ $P(A \cap B) = \frac{1}{15}$ A1 Total [6 marks, M1] A2 A1 Total [6 marks, M1] A3 A1 Total [6 marks, M1]	b A B C D E F G H -1.1 0.7 -1.1 -3.0 2.0 -1.3 -1.5 -2.8 M1A1 [2 marks] c $\overline{x} = -1.01, t = -1.72$ (evidence of using t-test) $p = 0.130 > 0.05$ Insufficient evidence that the means are different [3 marks] Total [6 marks] 14 $P(A \cap B) = P(A \mid B)P(B) \left[= \frac{2}{3}P(A) \right]$ Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3}P(A)$ $P(A \cap B) = \frac{1}{15}$ A1 Total [6 marks] Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1	13 a	$H_0: \mu_1 =$	$\mu_2; H_1: \mu$	$_{1}\neq\mu_{2}$						A1	
The second state of the s	The state of th		0 1	2 1	1 2						[1 m	ark]
The second state of the s	The state of th											
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	c $\overline{x} = -1.01, t = -1.72$ (evidence of using t -test) $p = 0.130 > 0.05$ Insufficient evidence that the means are different $P(A \cap B) = P(A \mid B)P(B) \left[= \frac{2}{3}P(A) \right]$ Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3}P(A)$ $P(A \cap B) = \frac{1}{10}$ $P(A \cap B) = \frac{1}{15}$ A1 Total [6 marks] A2 A3 A4 A4 A5 A6 A7 A1 A1 A1 A1 A1 A1 A1 A1 A1	b	A	В	С	D	E	F	G	Н		
c $\overline{x} = -1.01, t = -1.72$ (evidence of using t-test) $p = 0.130 > 0.05$ Insufficient evidence that the means are different $R1$ $[3 \text{ marks}]$ $Total \text{ [6 marks]}$ $Total \text{ [6 marks]}$ $14 \text{ P}(A \cap B) = \text{P}(A \mid B) \text{P}(B) \left[= \frac{2}{3} \text{P}(A) \right]$ $\text{Use P}(A \cup B) = \text{P}(A) + \text{P}(B) - \text{P}(A \cap B)$ $\frac{1}{5} = \text{P}(A) + \frac{1}{6} - \frac{2}{3} \text{P}(A)$ $\text{P}(A) = \frac{1}{10}$ $\text{P}(A \cap B) = \frac{1}{15}$ A1 $Total \text{ [6 marks]}$ $Alternative:$ Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1	$c \overline{x} = -1.01, t = -1.72 \text{ (evidence of using } t\text{-test)} $ $p = 0.130 > 0.05 $ $\text{Insufficient evidence that the means are different} $ $R1$ $[3 \text{ marks}]$ $Total \text{ [6 marks]}$ $Total \text{ [6 marks]}$ $\frac{14}{5} P(A \cap B) = P(A \mid B)P(B) \left[= \frac{2}{3}P(A) \right] $ $\text{Use } P(A \cup B) = P(A) + P(B) - P(A \cap B) $ $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3}P(A) $ $P(A) = \frac{1}{10} $ $P(A \cap B) = \frac{1}{15} $ $A1$ $Total \text{ [6 marks]}$ $Alternative:$ Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ $M1A1$			-					-	_	N 1 1 1	
c $\overline{x} = -1.01, t = -1.72$ (evidence of using t-test) $p = 0.130 > 0.05$ Insufficient evidence that the means are different [3 marks] Total [6 marks] [4 P(A \cap B) = P(A B)P(B) \Big[= \frac{2}{3}P(A) \Big] Use P(A \cup B) = P(A) + P(B) - P(A \cap B) \[\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3}P(A) P(A) = \frac{1}{10} P(A \cap B) = \frac{1}{15} A1 Total [6 marks] Alternative: Draw a Venn diagram with \frac{1}{30}, x, \frac{1}{6} - x M1A1	c $\overline{x} = -1.01, t = -1.72$ (evidence of using t -test) (M1) p = 0.130 > 0.05 A1 Insufficient evidence that the means are different $R1$ $[3 \text{ marks}]$ $Total \text{ [6 marks]}$ $Total \text{ [6 marks]}$ $14 \text{ P}(A \cap B) = \text{P}(A \mid B) \text{P}(B) \left[= \frac{2}{3} \text{P}(A) \right]$ $\text{Use P}(A \cup B) = \text{P}(A) + \text{P}(B) - \text{P}(A \cap B)$ $\frac{1}{5} = \text{P}(A) + \frac{1}{6} - \frac{2}{3} \text{P}(A)$ $\text{P}(A) = \frac{1}{10}$ $\text{P}(A \cap B) = \frac{1}{15}$ A1 $Total \text{ [6 marks]}$ $Alternative:$ Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$			0.7	111	210		1.0	110		IVITAT	
$p=0.130>0.05$ A1 Insufficient evidence that the means are different [3 marks, Total [6 marks]] 14 $P(A \cap B) = P(A \mid B)P(B) \left[= \frac{2}{3}P(A) \right]$ M1 Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ M1 $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3}P(A)$ A2 $P(A) = \frac{1}{10}$ (A1) $P(A \cap B) = \frac{1}{15}$ A1 Total [6 marks] Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1	$p=0.130>0.05$ A1 Insufficient evidence that the means are different [3 marks Total [6 marks]] 14 $P(A \cap B) = P(A \mid B)P(B) \left[= \frac{2}{3}P(A) \right]$ M1 Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ M1 $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3}P(A)$ A2 $P(A) = \frac{1}{10}$ (A1) $P(A \cap B) = \frac{1}{15}$ A1 Total [6 marks] Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1										[2 ma	rks]
Insufficient evidence that the means are different [3 marks] Total [6 marks] 14 $P(A \cap B) = P(A \mid B)P(B) \left[= \frac{2}{3}P(A) \right]$ Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3}P(A)$ $P(A) = \frac{1}{10}$ (A1) $P(A \cap B) = \frac{1}{15}$ A1 Total [6 marks] Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1	Insufficient evidence that the means are different [3 marks] Total [6 marks] 14 $P(A \cap B) = P(A \mid B)P(B) \left[= \frac{2}{3}P(A) \right]$ Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3}P(A)$ $P(A) = \frac{1}{10}$ P(A \cap B) = $\frac{1}{15}$ A1 Total [6 marks] Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1	c	$\overline{x} = -1.0$	01, t = -1.	72 (evide	ence of u	sing t-tes	st)			(M1)	
[3 marks] Total [6 marks] 14 $P(A \cap B) = P(A \mid B)P(B) \left[= \frac{2}{3}P(A) \right]$ Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3}P(A)$ $P(A) = \frac{1}{10}$ P(A \cap B) = $\frac{1}{15}$ A1 Total [6 marks] Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1	[3 marks] 14 $P(A \cap B) = P(A \mid B)P(B) \left[= \frac{2}{3}P(A) \right]$ Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3}P(A)$ $P(A) = \frac{1}{10}$ P(A \cap B) = $\frac{1}{15}$ A1 Total [6 marks] Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1		p = 0.13	30 > 0.05							A1	
Total [6 marks] 14 $P(A \cap B) = P(A \mid B)P(B) \left[= \frac{2}{3}P(A) \right]$ M1 Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ M1 $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3}P(A)$ A2 $P(A) = \frac{1}{10}$ (A1) $P(A \cap B) = \frac{1}{15}$ A1 Total [6 marks] Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1	Total [6 marks] 14 $P(A \cap B) = P(A \mid B)P(B) \left[= \frac{2}{3}P(A) \right]$ Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ M1 $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3}P(A)$ A2 $P(A) = \frac{1}{10}$ P(A \cap B) = $\frac{1}{15}$ A1 Total [6 marks] Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1		Insuffic	cient evid	lence tha	t the mea	ans are d	ifferent				
14 $P(A \cap B) = P(A \mid B)P(B) \left[= \frac{2}{3}P(A) \right]$ M1 Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ M1 $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3}P(A)$ A2 $P(A) = \frac{1}{10}$ (A1) $P(A \cap B) = \frac{1}{15}$ A1 Total [6 marks] Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1	14 $P(A \cap B) = P(A \mid B)P(B) \left[= \frac{2}{3}P(A) \right]$ M1 Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ M1 $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3}P(A)$ A2 $P(A) = \frac{1}{10}$ (A1) $P(A \cap B) = \frac{1}{15}$ A1 Total [6 marks] Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1										13 ma	70/201
Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ M1 $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3} P(A)$ A2 $P(A) = \frac{1}{10}$ (A1) $P(A \cap B) = \frac{1}{15}$ A1 $Total \ [6 \ marks]$ Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1	Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ M1 $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3} P(A)$ A2 $P(A) = \frac{1}{10}$ (A1) $P(A \cap B) = \frac{1}{15}$ A1 $Total \ [6 \ marks]$ Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1										-	_
Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ M1 $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3} P(A)$ A2 $P(A) = \frac{1}{10}$ (A1) $P(A \cap B) = \frac{1}{15}$ A1 $Total \ [6 \ marks]$ Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1	Use $P(A \cup B) = P(A) + P(B) - P(A \cap B)$ M1 $\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3} P(A)$ A2 $P(A) = \frac{1}{10}$ (A1) $P(A \cap B) = \frac{1}{15}$ A1 $Total \ [6 \ marks]$ Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1										-	_
$\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3} P(A)$ $P(A) = \frac{1}{10}$ $P(A \cap B) = \frac{1}{15}$ $A1$ $Total \ [6 \ marks]$ $Alternative:$ Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ $M1A1$	$\frac{1}{5} = P(A) + \frac{1}{6} - \frac{2}{3} P(A)$ $P(A) = \frac{1}{10}$ $P(A \cap B) = \frac{1}{15}$ $A1$ $Total \ [6 \ marks]$ $Alternative:$ Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ $M1A1$	14 P($(A \cap B) =$	$P(A \mid B)P(A \mid B)$	$(B)\begin{bmatrix} 2 \\ -2 \end{bmatrix}$						Total [6 ma	_
$P(A) = \frac{1}{10}$ $P(A \cap B) = \frac{1}{15}$ $A1$ $Total \ [6 \ marks]$ $Alternative:$ Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ $M1A1$	$P(A) = \frac{1}{10}$ $P(A \cap B) = \frac{1}{15}$ $A1$ $Total \ [6 \ marks]$ $Alternative:$ Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ $M1A1$				L 3	-					Total [6 ma	_
$P(A) = \frac{1}{10}$ $P(A \cap B) = \frac{1}{15}$ $A1$ $Total \ [6 \ marks]$ $Alternative:$ Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ $M1A1$	$P(A) = \frac{1}{10}$ $P(A \cap B) = \frac{1}{15}$ $A1$ $Total \ [6 \ marks]$ $Alternative:$ Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ $M1A1$				L 3	-	3)				Total [6 ma	_
$P(A \cap B) = \frac{1}{15}$ $A1$ $Total \ [6 \ marks]$ $Alternative:$ Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6}$ – x $M1A1$	$P(A \cap B) = \frac{1}{15}$ $A1$ $Total \ [6 \ marks]$ $Alternative:$ Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ $M1A1$	Us	se $P(A \cup A)$	B) = P(A)	+ P(B) -	-	3)				Total [6 ma M1 M1	_
$P(A \cap B) = \frac{1}{15}$ $A1$ $Total \ [6 \ marks]$ $Alternative:$ Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6}$ – x $M1A1$	$P(A \cap B) = \frac{1}{15}$ $A1$ $Total \ [6 \ marks]$ $Alternative:$ Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ $M1A1$	Us	se $P(A \cup A)$	B) = P(A)	+ P(B) -	-	3)				Total [6 ma M1 M1	_
Total [6 marks] Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1	Total [6 marks] Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1	$\frac{1}{5}$	se $P(A \cup A)$	B) = P(A)	+ P(B) -	-	3)				Total [6 ma M1 M1 A2	_
Total [6 marks] Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1	Total [6 marks] Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1	$\frac{1}{5}$ $P($	se $P(A \cup A)$ = $P(A) + \frac{1}{10}$	$B) = P(A)$ $\frac{1}{6} - \frac{2}{3} P(A)$	+ P(B) -	-	3)				Total [6 ma M1 M1 A2	_
Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1	Alternative: Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1	$\frac{1}{5}$ $P($	se $P(A \cup A)$ = $P(A) + \frac{1}{10}$	$B) = P(A)$ $\frac{1}{6} - \frac{2}{3} P(A)$	+ P(B) -	-	3)				Total [6 ma M1 M1 A2 (A1)	_
Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1	Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1	$\frac{1}{5}$ $P($	se $P(A \cup A)$ = $P(A) + \frac{1}{10}$	$B) = P(A)$ $\frac{1}{6} - \frac{2}{3} P(A)$	+ P(B) -	-	3)				Total [6 ma M1 M1 A2 (A1)	rks]
Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1 $\frac{x}{1/6} = 4\left(x + \frac{1}{30}\right)$ M1A1	Draw a Venn diagram with $\frac{1}{30}$, x , $\frac{1}{6} - x$ M1A1 $\frac{x}{1/6} = 4\left(x + \frac{1}{30}\right)$ M1A1 $x = \frac{1}{15}$ M1A1	$\frac{1}{5}$ $P($	se $P(A \cup A)$ = $P(A) + \frac{1}{10}$	$B) = P(A)$ $\frac{1}{6} - \frac{2}{3} P(A)$	+ P(B) -	-	3)				Total [6 ma M1 M1 A2 (A1)	rks]
$\frac{x}{1/6} = 4\left(x + \frac{1}{30}\right)$ M1A1	$\frac{x}{1/6} = 4\left(x + \frac{1}{30}\right)$ M1A1 M1A1	Us	se $P(A \cup A)$ = $P(A) + \frac{1}{10}$ $P(A \cap B) = \frac{1}{10}$	$B) = P(A)$ $\frac{1}{6} - \frac{2}{3} P(A)$ $\frac{1}{15}$	+ P(B) -	-	3)				Total [6 ma M1 M1 A2 (A1)	rks]
$\frac{1}{6} = 4 \left(\frac{x}{30} \right)$	$\frac{1}{6} = 4 \left(x + \frac{1}{30} \right)$ $x = \frac{1}{15}$ M1A1	Us 1/5 P(se $P(A \cup A)$ $= P(A) + \frac{1}{10}$ $P(A \cap B) = \frac{1}{10}$ Sternative.	$B) = P(A)$ $\frac{1}{6} - \frac{2}{3} P(A)$ $\frac{1}{15}$	+ P(B) -	- P(A ∩ E					Total [6 ma M1 M1 A2 (A1) A1 Total [6 ma	rks]
	$x = \frac{1}{15}$ M1A1	Us	se $P(A \cup A)$ $= P(A) + \frac{1}{10}$ $P(A \cap B) = \frac{1}{10}$ Sternative.	$B) = P(A)$ $\frac{1}{6} - \frac{2}{3} P(A)$ $\frac{1}{15}$ \vdots an diagra	+ P(B) -	- P(A ∩ E					Total [6 ma M1 M1 A2 (A1) A1 Total [6 ma	rks]
$x = \overline{15}$ M1A1	13	Us 1 5 P(P(All	se $P(A \cup A)$ $= P(A) + \frac{1}{10}$ $P(A \cap B) = \frac{1}{10}$ Sternative.	$B) = P(A)$ $\frac{1}{6} - \frac{2}{3} P(A)$ $\frac{1}{15}$ \vdots an diagra	+ P(B) -	- P(A ∩ E					Total [6 ma M1 M1 A2 (A1) A1 Total [6 ma	rks]
13		Us 1 5 P(P(All	se $P(A \cup A)$ $= P(A) + \frac{1}{10}$ $P(A \cap B) = \frac{1}{10}$ Sternative.	$B) = P(A)$ $\frac{1}{6} - \frac{2}{3} P(A)$ $\frac{1}{15}$ \vdots an diagra	+ P(B) -	- P(A ∩ E					Total [6 ma M1 M1 A2 (A1) A1 Total [6 ma M1A1 M1A1	rks]
		Us 1 5 P(P(All	se $P(A \cup A)$ $= P(A) + \frac{1}{10}$ $P(A \cap B) = \frac{1}{10}$ Sternative.	$B) = P(A)$ $\frac{1}{6} - \frac{2}{3} P(A)$ $\frac{1}{15}$ \vdots an diagra	+ P(B) -	- P(A ∩ E					Total [6 ma M1 M1 A2 (A1) A1 Total [6 ma M1A1 M1A1	rks]

Practice Set C: Paper 2 Mark scheme

	a	Means 58.9 and 45.8 Point added on the diagram										A1 A1		
	h					2000							A1	[2 marks]
	b	Line of best fit through the means												[1 mark]
	c	0.969												[1 mark]
	d	Attempt the correct line												[1 mark]
		<i>y</i> =	0.833x - 3.28										A1	[2 marks]
	e	i	Attempt to use			find	y fro	om x					M1	
			Student J: 44 m Student K: 16 m										A1 A1	
		ii	Student J: relia			ng co	orrela	tion					R1	
			Student K: not	relia	ble, a	s exti	rapola	ation					R1	[5]
	f	The	e correlation do	es no	t seer	n to l	oe lin	ear					R1	[5 marks]
		•	Tr' 1	,									0.4	[1 mark]
	g	1	Time ranks cor Paper 1 ranks of		ct								A1 A1	
			Student	A	В	C	D	E	F	G	Н]		
			Revision time rank	1	5	7	3	2	6	4	8			
			Paper 1 rank	1	5	8	3	2	6	4	7]		
		ii	$r_{s} = 0.976$										A1	
		iii	H_0 : There is no	o cori	relatio	on be	tweeı	n the	revisi	ion ti	me ai	nd the marks	}	
			H ₁ : There is a 1	posit	ive co	rrela	tion							
			[both correct]										A1	
			0.976 > 0.643, the revision tir					of po	sitive	corr	elatic	n between	A1	
				iie ai	ia tiie	man	ik 5						, (1	[5 marks]
													Total	[17 marks]
2	a		-5^2+5^2 [=75]										M1	
			6 cm										A1	[2 marks]
	b	sin	$-1 \left(\frac{5}{8.66} \right)$ or \tan^{-1}	$1\left(\frac{5}{\sqrt{50}}\right)$	=)								M1	[2 marks]
		35.	3 3	,,,,,	85								A1	
	c	πr^2	h = 125										M1	[2 marks]
			125										A1	
			πr^2 $= 2\pi rh + 2\pi r^2,$	renla	ce h l	w 12	5						M1	
						$\frac{\pi r}{\pi}$.2							
		Sin	nplify $2\pi r \times \frac{125}{\pi r^2}$	_ to _	$\frac{r}{r}$								A1	[4 marks]
	d	Gra	$aph of y = \frac{250}{x}$	+ 2π	c^2								M1	
			nimum value is										A1	
		The	e surface area or	f the	cylin	der is	sma	ller (1	138 ve	ersus	150)		A1	[2 mar/za]
	e	r =	$2.71, h = \frac{125}{\pi r^2} =$	5.42									A1	[3 marks]
		tan	$\theta = \frac{5.42}{2 \times 2.71}$										M1	
			45.0°										A1	
													Total	[3 marks] [14 marks]

3	a	$[4 - x^2 = 4 - x]$ or use GDC	(M1)	
		A(0, 4), B(1, 3) (0.5, 3.5)	A1 A1	
			[3 ma	irks]
	b	$\frac{\mathrm{d}y}{\mathrm{d}x} = -2x$	A1	,
		ax = -1	M1	
		$x = \frac{1}{2}$	A1 [3 ma	ırka1
	c	$y = 4 - \left(\frac{1}{2}\right)^2 = \frac{15}{4}$	M1	ii ksj
		$k - \frac{1}{2} = \frac{15}{4}$	(M1)	
		$k = \frac{17}{4}$	A 1	
		$\kappa = \frac{1}{4}$	A1	
			[3 ma	irks]
	d	$(\text{their } y_D) - (\text{their } y_C)$	M1	
		$\frac{1}{4}$	A1	
		4	[2 ma	irks1
			Total [11 ma	_
4	a	0.927	A1	a.u.l-7
	b	P(X < 8.3)	<i>[1 m</i> M1	arkj
	D	answer a	1411	
		0.931	A1	1 7
	c	$20 \times \text{answer } \mathbf{a}$	[2 ma (M1)	irks]
		18.5	A1	
			[2 ma	irks]
	d	Using B(20, answer a)	M1	
		$1 - P(X \le 17)$	M1	
		0.824	A1 <i>[3 ma</i>	irks1
	e	Using answer d	(M1)	
		$2 \times 0.824 \times (1 - 0.824)$	M1	
		0.290	A1	1 7
			[3 ma Total [11 ma	_
			Totat [11 ma	ii ksj
5	a	B	A1	
			[1 m	ark]
	b	x = 6, y = 3	A1A1	urlza I
	c	Gradient of $BD = -\frac{5}{3}$	[2 ma A1	irnsj
		$Midpoint = \left(\frac{15}{2}, \frac{7}{2}\right)$	A1	
		Equation: $y - \frac{7}{2} = \frac{3}{5} \left(x - \frac{15}{2} \right)$	M1	
		3x - 5y = 5	A1	
			[4 ma	irks]
	d	Intersect $3x - 5y = 5$ with $x = 6$ and with $y = 3$	M1	-
		$P\left(6, \frac{13}{5}\right), Q\left(\frac{20}{3}, 3\right)$	A1A1	
		5 / 5 / 2 (3 , 5)	[3 ma	irks1
			_L 5 ma	i ivoj

	e	Attempt to find distances from P and Q to one of B or D .	M1	
		$PB = 6 - \frac{13}{5} = 3.4$	A1	
		$QB = \sqrt{\left(\frac{20}{3} - 6\right)^2 + (3 - 6)^2} = 4.01$	A1	
		The post office should be built at Q Because $QB > PB$	-	marks]
			Total [15	marksj
6	a	Using $T - B$ halves every 3 minutes		
		When $t = 0$: $93 - B = A$	A1	
		When $t = 9$: $T - B = \frac{1}{8}A$ $T - B = \frac{1}{8}(93 - B)$ Rearranges correctly to $T = \frac{93 + 7B}{8}$	M1	
		$T - B = \frac{1}{8} (93 - B)$	M1	
		Rearranges correctly to $T = \frac{93 + 7B}{8}$	A1AG	
	b	Using $t = 9$ and $t = 0$: $\frac{1}{8}A = A \times 10^{-9k}$	/4 M1	[marks]
	~	$\frac{1}{8} = 10^{-9k}$	A1	
			A1AG	8 marks]
	c	When $t = 9$: $30 = \frac{93 + 7B}{8}$	L	,
		When $t = 0$: $93 = B + A$	M1	
		A = 72, B = 21	A1	
		$10^{3k} = 2$ so $k = \frac{1}{3} \log 2 \ (=0.1003)$	A1	
		Attempt to solve $24 = 21 + 72 \times 10^{-kt}$ with $k = \frac{1}{3} \log 2$	M1	
		t = 13.75, so another 4.75 minutes	A1	
			[5] Total [12	marks] ? marks]