Quadratics - review (TL) [116 marks]

1. [Maximum mark: 5] EXN.2.SL.TZ0.5 The quadratic equation $(k-1)x^2+2x+(2k-3)=0$, where $k\in\mathbb{R}$, has real distinct roots.

Find the range of possible values for k.

[5]

2. [Maximum mark: 16]

The following diagram shows part of the graph of a quadratic function f.

The vertex of the parabola is $(-2,\ -5)$ and the y-intercept is at point ${
m P}.$

(b)	Write down the values of h and k .		2]

(c) Find the y-coordinate of P. [2]

In the following diagram, the line L is normal to the graph of f at point ${
m P}.$

[3]

The line L intersects the graph of f at a second point, ${f Q}$, as shown above.

- (e) Calculate the distance between P and Q. [8]
- 3. [Maximum mark: 6] 23M.1.AHL.TZ1.4 Find the range of possible values of k such that $e^{2x} + \ln k = 3e^x$ has at least one real solution. [6]

23M.1.AHL.TZ2.5

4. [Maximum mark: 7] The functions f and g are defined for $x \in \mathbb{R}$ by

$$f(x)=ax+b$$
 , where $a,b\in\mathbb{Z}$ $g(x)=x^2+x+3.$

Find the two possible functions f such that $ig(g\circ fig)ig(xig)=4x^2-14x+15.$

[7]

5. [Maximum mark: 16]22N.1.SL.TZ0.7(a) The graph of a quadratic function
$$f$$
 has its vertex at the point $(3, 2)$ and it intersects the x -axis at $x = 5$. Find f in the form $f(x) = a(x-h)^2 + k.$ [3]The quadratic function g is defined by $g(x) = px^2 + (t-1)x - p$ where $x \in \mathbb{R}$ and $p, \ t \in \mathbb{R}, \ p \neq 0.$

In the case where g(-3)=g(1)=4,

(b.i)find the value of p and the value of t.[4](b.ii)find the range of g.[3](c)The linear function j is defined by j(x) = -x + 3p where $x \in \mathbb{R}$ and $p \in \mathbb{R}, \ p \neq 0$.

Show that the graphs of j(x) = -x + 3p and $g(x) = px^2 + (t-1)x - p$ have two distinct points of intersection for every possible value of p and t. [6] **6.** [Maximum mark: 15]

The following diagram shows part of the graph of a quadratic function f.

The graph of f has its vertex at $(3,\;4)$, and it passes through point ${
m Q}$ as shown.

The function can be written in the form $fig(xig) = a {(x-h)}^2 + k.$

(b.i) Write down the values of h and k. [2]

(b.ii) Point
$$\mathrm{Q}$$
 has coordinates $(5,\ 12)$. Find the value of a . [2]

The line L is tangent to the graph of f at \mathbf{Q} .

(c) Find the equation of L. [4]

Now consider another function y=g(x). The derivative of g is given by $g\prime(x)=f(x)-d$, where $d\in\mathbb{R}.$

(d) Find the values of d for which g is an increasing function. [3]

- (e) Find the values of x for which the graph of g is concave-up. [3]
- 7.[Maximum mark: 4]22M.2.AHL.TZ1.8Consider the equation $kx^2 (k+3)x + 2k + 9 = 0$, where $k \in \mathbb{R}$.(a)Write down an expression for the product of the roots, in terms of k.(b)Hence or otherwise, determine the values of k such that the equation has one positive and one negative real root.[3]

[Maximum mark: 7] Consider the function f(x)=-2(x-1)(x+3), for $x\in\mathbb{R}.$ The following diagram shows part of the graph of f.

For the graph of f

8.

(a.i)	find the x -coordinates of the x -intercepts.	[2]
(a.ii)	find the coordinates of the vertex.	[3]
(b)	The function f can be written in the form $f(x)=-2{\left(x-h ight)}^2+k.$	
	Write down the value of h and the value of k .	[2]

- 9. [Maximum mark: 7] 21N.1.AHL.TZ0.7 The equation $3px^2 + 2px + 1 = p$ has two real, distinct roots.
 - (a) Find the possible values for *p*. [5]
 - (b) Consider the case when p=4. The roots of the equation can be expressed in the form $x=rac{a\pm\sqrt{13}}{6}$, where $a\in\mathbb{Z}$. Find the value of a. [2]
- 10. [Maximum mark: 14] 21M.1.SL.TZ1.7 Let $f(x)=mx^2-2mx$, where $x\in\mathbb{R}$ and $m\in\mathbb{R}.$ The line y=mx-9 meets the graph of f at exactly one point.
 - (a) Show that m = 4. [6]

The function f can be expressed in the form f(x)=4(x-p)(x-q), where $p,\,q\in\mathbb{R}.$

(b) Find the value of p and the value of q. [2]

The function f can also be expressed in the form $f(x)=4(x-h)^2+k$, where $h,\,k\in\mathbb{R}.$

(c) Find the value of h and the value of k. [3]
(d) Hence find the values of x where the graph of f is both negative and increasing. [3]

11. [Maximum mark: 6]

The functions f and g are defined for $x\in\mathbb{R}$ by $f(x)=6x^2-12x+1$ and g(x)=-x+c, where $c\in\mathbb{R}.$

(a) Find the range of f. [2]

21M.2.SL.TZ2.5

(b) Given that $(g \circ f)(x) \leq 0$ for all $x \in \mathbb{R}$, determine the set of possible values for c. [4]

12. [Maximum mark: 6]

The diagram shows the graph of the quadratic function $fig(xig)=ax^2+bx+c$, with vertex $(-2,\ 10).$

The equation f(x)=k has two solutions. One of these solutions is x=2.

- (a) Write down the other solution of f(x) = k.
- (b) Complete the table below placing a tick (✓) to show whether the unknown parameters a and b are positive, zero or negative. The row for c has been completed as an example.

	positive	zero	negative
a			
b			
с	~		

[2]

[2]

(c) State the values of x for which f(x) is decreasing. [2]

13. [Maximum mark: 7] 19N.1.SL.TZ0.S_3 Let $g\left(x
ight)=x^2+bx+11$. The point $\left(-1,\,8
ight)$ lies on the graph of g.

(a)	Find the value of <i>b</i> .	[3]
(b)	The graph of $f\left(x ight)=x^2$ is transformed to obtain the graph of g .	
	Describe this transformation.	[4]

© International Baccalaureate Organization, 2024