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I. Introduction

On 11" March, 2011, a huge nuclear disaster happened in Fukushima, Japan and the
global effects it left are still present nowadays. A major earthquake and a 15-metre
tsunami disabled the power supply and cooling of three nuclear reactors at the
Fukushima Daiichi Nuclear Power Plant which led to massive releases of radioactive
material into the atmosphere as well as the ocean in several days (World Nuclear
Association, 2020). About 160,000 people were forced to evacuate in the radius of
20-30 km from the power plant and in 2019, the government eased the measure which
allowed parts of Okuma to open for business, “but only a few hundred residents have
moved home” (McCurry, 2019). I find this very interesting because clearly, the
phenomenon and mathematics behind this situation are quite complicated therefore, a
lot people are very worried and confused about the long-term effects of the
radioactive materials released. Therefore, the following research question arose in my
mind, When is it safe for adults and infants to live normally in Fukushima again? As
an aspiring nuclear physicist, answering this question can help not only me but also
the readers to understand how serious are the effects of radioactive materials when
they are accidentally leaked into the environment. From that, we can have a more
thorough understanding about the situation in Fukushima so that the old residents can
feel more secure when thinking of going back to their old town.

The radioactive materials consist of radioactive nuclei and they are dangerous because
they will all undergo radioactive decay, a process which emits energy in the form
of ionising radiation and this radiation can either kill cells or damage the DNA, which
can eventually lead to cancer (Kirschenbaum, 2016). In order to answer the research
question, firstly I will need to investigate and generate a mathematical model of
radioactive decay that can hypothesize the number of nuclei left (haven’t undergone
decay) at any particular time. 2 approaches will be used to test against each other:
graphing and algebraic method. The collecting data process for graphing method will
be done with the support of a radioactivity simulation because this type of experiment
cannot be conducted at school lab. The model will then be applied to the accident.
There were different radioactive isotopes released in the accident, which basically
means that they have different half life (the time it takes for half of the radioactive
samples to decay). By applying the model to different isotopes, I can find their
activity at any particulate time in the future. For people to live there safely, the
activity must be lower than the safety radiation dose limits. The radiation limits vary
with age and gender, however this exploration will only investigate about infants
below | year old, male and female adults.

Il. The mathematical model of radioactive decay

1. Graphing approeach
a) Collecting data

A virtual radioactive decay experiment was conducted on an Alpha decay simulation
(PhET, 2016). The experiment started with 100 radioactive nuclei of the an isotope
and they decay over time. Theoretically, the number of nuclei that haven’t undergone
decay (N) will never reach 0 since after 1 half life, half of the radioactive samples will
decay and that goes on to infinity. The number of nuclei left were shown in the
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simulation

and that was recorded every S seconds from the start of the experiment

until it became constant at 1 (the simulation can only show an integer of nuclei so 1 is
the smallest possible number of nuclei left to be shown). A 5-second separation was
chosen because that was just enough time to note down the number as well as to see a
detailed yet, distinct change in number of nuclei.

b) Result

Time (s) N (nuclei) Time (s) N (nuclei)
0 100 55 8
5 78 60 6
10 60 65 4+
15 46 70

20 40 75 3
25 31 F&O 2
30 DS 85 2
35 19 90 1
40 16 95 1
45 13 100 1
50 11

Table 1. Number of present nuclei every 5 seconds

The data in Table 1 were plotted to produce a scatter diagram with y-axis being N and
x-axis being the time 7 (see Figure 1.) This was done in order to see which model is
best suitable for shape of the plotted data as well as when applying to the context.
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Figure 1. Scatter diagram of number of present radioactive nuclei vs Time

¢) Analysis of the graph

The shape of the graph:

- Has 1 horizontal asymptote y = 0 because N will never reach 0: linear, polynomial,
power and sinusoidal functions are not suitable because they do not have horizontal
asymptotes: logistic function is not suitable because it has 2 different horizontal
asymptotes.

- Does not have a vertical asymptote as t (x-coordinate) does reach 0: inverse
variation function is not suitable

- The domain and range are all real numbers

- As x increases, y decreases (a decreasing graph)

- The graph is continuous and smooth

= An exponential decay relationship (ae**) where a > 0 and 0 > b > 1, fits with both
the shape of the graph and the contextual situation.

It is worth to note that there are more mathematical models to be considered, but they
are not taken into account because they are beyond the level of this course.

The equation of the exponential regression line and the coefficient of determination
(r?) were generated (see Figure 2.)
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Figure 2. The relationship between the number of present radioactive nuclei and time

The value of r? is very high (= 0.9939) which means that 99.39% of the total variance
in number of nuclei can be explained by the exponential relationship with the variance
in time. Therefore it shows that exponential regression line can represent the data very
well.

d) Finding parameters

In an exponential decay relationship f(x) = ae®: f(0) = a

In this situation, that is the initial amount of the radioactive sample (N,). However,
the value of @ in the regression line generated is not 100% true in this situation
(102.67 #100)

The percentage error is: 102'?;0_ IOO‘ x100% = 2.67%
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The error could be due to the randomness of radioactive decay process as well as the
uncertainty of the nuclei count of the simulation. Also, the number of nuclei was not
recorded exactly every Ss but instead Ss + reaction time, therefore the variation of
reaction time in each record could decrease the precision of the result.

The general mathematical model for radioactive decay is therefore:

N(t)=N e" |where N, is the initial number of nuclei, b is a constant.

2. Algebraic approach

To confirm the result from the graphing method, a further investigation was
conducted to find the relationship between them again but this time, algebraically.
From laboratory experiments, lots of scientists have found the relationship between

the rate of decay and number of present nuclei to be: C:I—]:’ « N (Choppin, Liljenzin,

Rydberg, & Ekberg, 2014)

Since different isotopes have different rates of decay, let A be a decay constant unique

to an isotope, we have L;—N:,{N (1)

t
(1) is a separable differential equation. N and t must be separated so that N is on one
side and t is on the other side of the equation.

ﬂ=ixdt
N

To take out dN and dt, both sides are integrated:
[~xdN = [ axd
N

=In(N)=Ar+c¢ (c= constant of I/ldt - constant of J‘%,dN)

To find the relationship between N and t, both sides are taken to be the exponent of
the base e:

eln(.\’) = N ___ei.hc

Finally, t and A must be eliminated to find c, that is when t =0, N(0) =¢* % = ¢°
Applying to the context, N (0) is the initial amount of radioactive nuclei (N,) and the
radioactive decay equation is therefore:

N(t) = N.xe™ | (2),

which is an exponential equation.

In conclusion, both methods confirm that radioactive decay can be modelled using an
exponential function f(x) = ae®™ with a = N,, x is time and b is the decay constant.

AN
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1. Half life and Decay constant

In nuclear physics, different radioactive isotopes are usually distinguished based on
their half lives and since the radioactive decay equation does not have that variable,
the relationship between half life and one of the variable in the equation, in this case
is A must be found

L
Half life (112) is the time it takes for half of the radioactive samples to decay

I
“N(y) =N @)

From (2) and (3), ¢™* =-;—

ti2 and A must be separated so that ti2 is on one side and A is on the other side of the
equation. Take the natural logarithm of both sides:

Ay

1
Ine™? = ln5(4) and using the logarithm power rule: Ine™? =11, Ine = A1, , (5)

F=

In
From (4) and (5): ln—:l)'- = At,,, ,rearranging that to have 7, =

)

; : L. s
Using negative exponent rule, . 2

5 In2"
b = ——
A A
,I =,
Using the logarithm power rule, 7, = In; = l:’ 2
In2
b s
O]

2. Applying to the experiment
Relationship (6) is applied to the experiment in the first place to test for its validity.
From the generated regression line, A = -0.048

LI
-0.048
To confirm this result, the regression line was graphed on Desmos and interpolate to
find the half life (Desmos, 2015) (see Figure 3. and 4.)

Substitute A into (6), 1, =~

F I 5
)

x

I3 0 £ ™ E B

Figure 3. The graph of exponential function in Figure 2.
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N (nuckon)
-

Figure 4. Finding the half life by interpolation

When N = 50, t = 15 (see Figure 4.) and the percentage error is:

14":5"5 x100% = 4%

The difference could be due to level of accuracy of generated decay constant in the
regression line, interpolation as well as the uncertainty of the experiment as
mentioned earlier. The 1ssue of level of accuracy means that A = -0.048 is not the
exact value but was already rounded. Also, because the half life from the graph was
achieved by interpolation, there must be some degree of uncertainty in it.

IV. Activity equation
In nuclear physics, the activity of a radioactive sample is not usually shown as the
number of nuclei (N) but actually “the average number of disintegrations per second”

or the rate of decay. This can be expressed as ‘:—I:/

Let the “l]—]:/ be A, from (1) and (2): A= AN = AN, xe” (7)

From (7): A (0) = A, (the initial activity) = AN,

LA = A, xe™| (8)

The unit of activity is becquerel (Bq). One becquerel means there is one decay per
second.

V. Applying the model to the accident
1. Information about the radioactive materials released

There were 3 main radioactive materials released into the air and ocean: lodine-131 (I'*");
Caesium-134 (Cs'**) and Caesium-137 (Cs'). Below is the information table about the
them including their half life; decay constants (calculated using (6)); dose coefficients for
ingestion and inhalation (ICRP, 2012); concentrations in air on 19" March, 2011 (IAEA,
2015) and in water on 28" March, 2011 (TEPCO, 2011):

AN
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ll}l Csll‘ Cs137
ti2 (year) 2.20x107" 2.06x10" 3.00x10'
Ay -3.15x10' -3.36x10" -2.31x107*
Concentration in water on | |.10x10" 1.90%10° 1.90x10°
28" March, 2011 (Bq/dm?®)
Ingestion dose coefficient | 2 20x10" 1.90x10°* 1.30x10°*
for adults (Sv/Bq)
Ingestion dose coefficient for | 480107’ 2.60x10°* 1.10x10°*
infants (Sv/Bq)
Concentration in air on | |.00x10* 3.00%10' 3.00x10'
19" March, 2011 (Bq/m’®)
Inhalation dose coefficient | 2 40x10° 9.10x107? 9.70x10°°
for adults (Sv/Bq)
Inhalation dose coefficient [ 2.20x10* 3.20x10°® 3.60x10°
for infants (Sv/Bq)

Table 2. Information about radioactive materials released

It should be noted that there were a lot radioactive materials released in the accident,
however, this exploration only investigates the 3 main ones, which can significantly
decrease the accuracy of the calculated activity, dose as well as the final result. Also, all
information in Table 2. has some level of uncertainty, especially the concentration in air and
water. For water, it was assumed that the concentrations in Table 2., which were calculated
based on a 500ml sample of seawater around the south of Fukushima Daiichi Nuclear
Power Station, were the same for all areas, which is not realistic. This is also the case for the
concentrations in air because they were calculated right at the nuclear power plant and were
assumed to be the same for all areas in Fukushima.

2. Radiation dose limits and physiological data for different age groups and genders
a) Radiation dose limits

The safety radiation limit for human is counted in Sievert (Sv), that is “the SI unit for
ionising radiation dose, measuring the amount of energy absorbed in a human's body
per unit mass” (Donev, Stenhouse, Hanania, & Campbell, 2018). The safety doses
published on the MIT’s newspaper (1994) is in millirems (an alternative unit for
radiation dose), therefore they need to be converted into Sv (1 millirem = 0.00001 Sv).

Age group Radiation  dose  limit | Radiation  dose  limit
(millirems/year) (Sv/year)

Adults 5000 0.05

Infants 500 0.005

Table 3. Radiation dose limit of two age groups
From Table 3., it means that in order for an adult to live safely in Fukushima, the annual
ionising radiation dose must be < 0.05 Sv and for an infant it must be < 0.005 Sv.
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b) Physiological data for calculation of dose

The data of yearly water consumption and air intake are necessary for the calculation of
annual radiation dose, however, according the ICRP (2002) and WHO (2004), only the data
of daily water consumption and air intake are presented, therefore they are multiplied by
365 (1 year = 365 days) and the results were as follows:

Male adult Female adult Infant
Annual water 949 715.4 255.5
consumption
(dm¥/year)
Annual air intake 8103 6643 1022
(m’/year)

Table 4. Yearly water consumption and air intake

It should be noted that Table 3. and 4. only present an the average value for that age group
or gender. In reality, these values vary with an individual’s environment, body mass and
activity, therefore it decreases the accuracy when generalising and applying the results to
the whole population.

3. Dose via ingestion of water
a) Equation for the dose by drinking 1L of water

For radioactive materials in water, the dose is calculated by assuming that human absorb
them via ingestion. To calculate the annual dose via ingestion of a radioactive isotope in
water, firstly we need to find the dose by drinking a unit of water, in this case is 1 litre (= 1
dm’).

C. xdc. =dx,« (9a)

X Xiegest *

C,_is the concentration of radioactive isotope x in water (Bg/dnr’)
de, 8 the dose coefficient for ingestion of radioactive isotope x (Sv/Bg)

d, _is the dose from radioactive isotope x via ingestion of water (Svdnr)

Soge

b) Equation for the dose per year by drinking water

After having the dose by drinking 1L of water, we multiple that to the average annual water
consumption of an individual to yield the annual dose via ingestion of water:

T

nge

W is the water consumption per year (L'y)
D, is the dose from radioactive isotope x via ingestion of water per year (Svy)

*.

¢) Total dose per year by drinking water
Let ', Cs', Cs'¥7 be x, y, z respectively.

AN
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D. +D +D. =D,

Nngew Vongent Tugew | M0Mal e,
Dy, i the total dose (from 3 radioactive materials) per year by drinking water (Sv'y)
Using (9a) and (9b):
Dy, =C, xde,  xWC+C, xde, xWC+C, xde, xWC
Factorising the above,
(€, xdec,  +C, xdc, +C, xde,  IWC=D,,  |0¢)

d) The concentration in water over time

‘;d.c),’_,;d.c:* J;YW(,' are constants, C

Xy

;(.’",_ o . vary over

time.
Using equation (8) to have:

Au Xelx‘ Au Al J At
- - e™ =" we™ | (9d)

= () Volume of water Volume of water i

Apply (9d) for yand z tohave:

o,

C. ()=C" xe™

C. (1)=C" xe'
» ; (9e)

€ G are the initial concentration of radioactive isotope x,y,z in water
respectively.

A Ay A, are the decay constant of radioactive isotope X, y, z respectively

However, since the samples used to calculate the concentrations of the radioactive materials

were collected several days after the accident occurred, they were not the initial
concentrations (Co). To find Co:

Clt)y=C,xe*
C@ _ »

Rearranging to have =e

)

Taking the natural logarithm of both sides: ln(%] =Ine”

Using logarithm power rule: Ine” = Arlne = At

Using logarithm quotient rule: ln(((,—(’)J =InC(t)-InC,

SInC(t)-InC, = Ar
InC,=InC(t)- At

elnC(l)'.Ll - Co (90
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The information from Table 2. were substituted in equation (9f), with A being the decay
constant, C(t) being concentrations of radioactive materials in water on 28" March, 2011

and = % year (17 days after the accident). The results were as follows.

13 CSIJ-I CSI37

Initial concentration | 477 10" 1.93x10° 1.90x10°1.90x10°
in water (Bq/dm’®)

Table 5. Initial concentration of radioactive materials in water

Because the initial concentrations from Table 5.  were achieved by extrapolating
backwards, therefore this can significantly decrease the accuracy of the calculated activity
and final result

e) Substituting data into equation

Substitute (9d) and (9e) into equation (9c):

w At 3 W At W At 5 v _
((.D’ xe "d-"x,.‘,,, +(,a’ xe™” xd.c_‘,'w +(.a__ xe Xd“’-'w.g WC = Dmmlm, 9)

Substitute the information in Table 2., Table 4., Table 5. into equation (9):

i. Male adult
D =(4.77 x10* xe 3510 3 2 20 x107% +1.93 x10% xe 3319 41,90 x10*

total ..

+1.90 x10% x e 3% 1 30 x 10 *) x 949
=9.95x10 " xe 1 1 3,48 x 1077 x e 1 £ 2351072 x e I

ii. Female adult

Dy, =7.50x107" xe "1 +2.62x10° xe >0 41.77x107? x 2310

L -

iii. Infant

Dy, =5-85x10°xe 11" +1.28x107 xe 31 4 5.35x107 x e 2310

total .y

4. Dose via inhalation of air

For radioactive materials in air, the dose is calculated by assuming human absorb them via
inhalation. The similar process done to calculate he dose via ingestion of water (see Section
3.) was used.

a) Equation for dose by inhaling 1 m? of air
C, xde, =d__|(10a)

Xuhaie Xiahale

v

C. is the concentration of radioactive isotope x in air (Bq/'m’)
de, isthe dose coefficient for inhalation of radioactive isotope x (Sv/Bg)

d,  is the dose from radioactive isotope x via inhalation of air (Sv'dnr’)

AN
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b) Equation for the dose per year by inhaling air
d.  xAl=D, _ [(10b)

X

Al is the air intake per year (n’y)

D, is the dose from radioactive isotope x pear year via inhalation of air (Sv'y)

¢) Total annual dose by inhaling air
Use equation (10a) and (10b) to achieve:
€, xde,,  +C, xde, +C, xde, )AI=D,

y ol e

(10¢)

D,

1otal .

_is the total dose (from 3 radioactive materials) per year by inhaling (Sv'y)

d) Concentration in air over time

For radicactive isotope y:| C, (1) =C] xe™" |(10d)
For radioactive isotope y: C, (1)=C; xe™" | (10e)

For radioactive isotope z:| C. (1)=C; xe™ | (10f)

Use equation (9f) to achieve the following table:

lIJI Csl:u Csl:ﬂ

Initial concentration | | 99 10* 3.02x10" 3.00x10"
in air (Bq/m’)

Table 6. Initial concentrations of radioactive materials in air

e) Substituting data into equations
Substitute equation (10d), (10e), (10f) into equation (10c¢) to have:

(10)

~ 2 At ~ :
(CZ xe* xde, +C?xe"'xde, +C:xe™ xde, YAI=D,
] e y Smhcle 2 “mhale

o1al, .

Substitute the information in Table 2., Table 4, Table 6. into equation (10):
i. Male adult

Dy, =387x107 xe ™1 £2.23x1077 xe 17 4236 %107 xe 21

total,y .

ii. Female adult

D T 3.]8X1071 xe’s 15-10'1 +1.83x 1073 xe—né-m"l +1.93 x |0—3 xe-:.ﬂ-lo'*:

total ..,

iii. Infant

D =4.48x10’] xe'“s'ml' +9.88x10 4 xe 336:107"¢ +1.10x10 3xe 231107

1o0tal .1,

5. Total annual dose:
Bpe= D + D, (11)

total total,,,. 4
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D,,., is the total dose of a person (from both drinking water and inhaling air) per year
(Svy)

Using equations from Section 3e, Section 4e and equation (11) to have:
a) Male adult

Dy =1.38x¢72 1171 10,0370 x ¢ %17 40,0258 x ¢ 2317

Radaton G per yeur (Sviy)

= = - S— 1

Figure 5. The radiation dose of a male adult over time

In Figure 5., y=D,,, and x=1. As the concentrations of radioactive materials change

with time, the radiation dose will also change with time, in this case it is decreasing, as seen
from Figure 5.  Therefore, to find the actual dose in a certain period of time, D,,, is

integrated with respect to t to find the area between the curve, the x -axis and the line
x=¢ and x=1+1.

The area (radiation dose) must be lower than 0.05 (see Table 3.):

1+l
(j'l.ssxe" 1940 4 00370 xe 31" 40,0258 xe ") < 0.05
!

- [ o.0439xe #1519 _g.110xe 50 _ 125350 ] <005
1 =0.697 year ~ 254 days

254 days from the accident is on 20" November, 2011
b) Female adult

Dlolal =1.07xe” oy +0.0281 x ¢3¢0 " + 0,0]96)((3':3"“’":'

Hacmton cose per ves (Svy)

- m= S Tove (yoors),

Figure 6. The radiation dose of a female adult over time
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1+1
([1.07xe "1 +0.0281xe* """ +0.0196 xe **"* dr) < 0.05

= [- 0.0339xe """ ~0,0835xe ¥ ~0.849x ¢ * I' <0.05
1 ~0.0492 year ~ 18 days
18 days from the accident is on 29" March, 2011

¢) Infant

 otal = 6.29)(87315.10', +0.0[38X€'336'm | +0.00645 xe‘:'“'“":

[ s

D,

Ragdaton dose per youl (Sety)

Figure 7. The radiation dose of an infant err time
The area must be lower than 0.005 (see Table 3.):

1+1
( j 6.29xe 519 10,0138 xe %™ +0.00645xe > dr) < 0.005

= [- 0.200xe 1%~ 0,041 1xe 317 0,279 x ¢ 230" I" <0.005
t=12.2 years

12.2 years from the accident is around June, 2023

VI. Conclusion

On the way to investigate the question, When is it safe for adults and infants (o live
normally in Fukushima again?, a lot of useful models and relationships were found
such as the exponential model for radioactive decay N(7) = N. xe™ with N(7) being
the number of radioactive nuclei left at time ¢, N, is the initial number of
radioactive nuclei present and A is the decay constant of that radioactive isotope. This
exponential model is confirmed using both graphing and algebraic method as well as
widely accepted by scientists, such as seen in the book Nuclear and Particle Physics
(Amsler, 2015) as well as many other scientific works. This relationship leads to a
more useful equation that can be well applied to real life problems, that is the activity
equation A(r)= A, xe” with A(r) being the activity of the isotope at time ¢ and
A, is the initial activity. The relationship between half life and decay constant was
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also found to be 1,,, = —% with ¢, being the half life and this relationship is also

very useful when applying to real life problems.

The models and relationships found were applied to the accident and it was found that
female adults can start to live there the soonest, about 18 days from the accident
which means on or after 29" March, 2011. Male adults can start to live there after
about 254 days, which is on or after 20" November, 2011. For infants, it is a lot
further away, 12.2 years from the accident which means around June, 2023. The
results for adults were very surprising and not expected, especially for female because
18 days seem to be contradicted with the government’s order of evacuation and also,
too soon for a nuclear accident of that scale. This result means that adults can already
live in Fukushima by now, however they cannot bring their young children, which can
explain why the government had evacuated the residents that long. This makes me
wonder are there any infants in those evacuees that have came back to Fukushima or
not because based on the result, living there at this time would have very serious
effect on their health. This result could also be used to discuss about economics
impacts on the city because since the accident occurred, most of businesses in the city
were shut down and the economics here had dropped significantly. With this result, it
seems like a lot of families cannot go back until 2023, which implies that the
economics of the city cannot fully recover until that time.

VII. Evaluation and Extensions

In regards to some unexpectedness about the result, the limitations of this exploration
should be taken into account.

When modelling the radioactive decay:

1. Collecting data from a virtual simulation can make them quite artificial and not
realistic. This can be improved by conducting real experiment in the lab, however,
this is not accessible at high school level.

2. The experiment was only conducted once. In the future, there should be multiple
trials which can decrease the effect of random errors and thus, increase the precision
and accuracy of the data collected.

When applying to the accident:

3. The major limitation was only investigating 3 radioactive materials released in the
accident and that could have a significant effect on the final result. In further
exploration, other radioactive materials released should be taken into consideration to
achieve a more accurate and realistic result.

4. A lot of assumptions were made such as: the concentrations in air and water;
average dose limit and physiological data; human absorbed radiation via ingestion of
water and inhalation of air but neglected direct exposure. Therefore this could
decrease the accuracy of the results as well as the ability to apply them to different
people. If this exploration were to be extended, the researchers should research and
use concentrations for different areas; calculate and use the radiation dose limit for
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different human body mass and age; use physiological data for different age, body
mass and activity. These improvements can help to provide a more accurate and
thorough answer for the question.

5. ‘Background radiation” - the radiation occurs naturally from soil, food, buildings,
etc., is neglected. If this is taken into account, it should also be counted in the
radiation dose and therefore, the time at which human can live in Fukushima again
will be further away.

6. Everything was rounded to 3 significant figures and this could decrease the
accuracy of the final result. Higher level of accuracy can be achieved by rounding to
more significant figures.

This exploration however, does have the strength that was using different methods to
test the validity of the equation or relationship found.

Extension:

1. If this exploration were to be extended, especially at higher education, more
complex analysis and mathematical models should be taken into consideration.

2. Similar investigation can also be applied to other nuclear accidents such as
Chermobyl and the decay chain can be explored. This means that after a radioactive
nuclei decays, it produces another ‘daughter’ nuclei that is also radioactive but has
different half life. The 3 radioactive materials investigated in this exploration produce
their ‘daughter’ nuclei, however since they’re all stable (meaning that they will not
decay and emit radiation) therefore the decay chain cannot be explored.
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