Probability - basics 2 (preDP2) [26 marks]

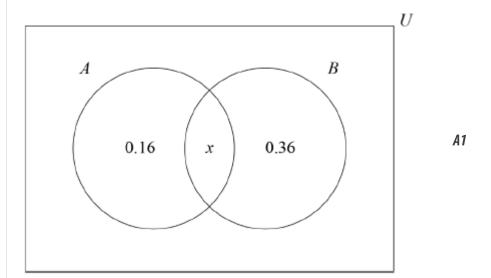
1. [Maximum mark: 6]

22M.2.SL.TZ1.6

Let A and B be two independent events such that $\mathrm{P}(A\cap B\prime)=0.$ 16 and $\mathrm{P}(A\prime\cap B)=0.$ 36.

(a) Given that $\mathrm{P}(A\cap B)=x$, find the value of x .

[4]


Markscheme

METHOD 1

EITHER

one of
$$\mathrm{P}(A)=x+0.\,16\,\,\mathrm{OR}\,\,\mathrm{P}(B)=x+0.\,36$$

OR

THEN

attempt to equate their $\mathrm{P}(A\cap B)$ with their expression for $\mathrm{P}(A) imes \mathrm{P}(B)$

$$\mathrm{P}(A\cap B)=\mathrm{P}(A) imes\mathrm{P}(B)\Rightarrow x=(x+0.16) imes(x+0.36)$$

$$x=0.24$$

METHOD 2

attempt to form at least one equation in $\mathrm{P}(A)$ and $\mathrm{P}(B)$ using independence $\emph{M1}$

$$(\mathrm{P}(A\cap B\prime)=\mathrm{P}(A) imes P(B\prime)\Rightarrow)\ \mathrm{P}(A) imes (1-\mathrm{P}(B))=0.\ 16$$
 or

$$(P(A \cap B) = P(A \cap B) \times P(B) \Rightarrow) (1 - P(A)) \times P(B) = 0.36$$

$$\mathrm{P}(A)=0.4$$
 and $\mathrm{P}(B)=0.6$

$$P(A \cap B) = P(A) \times P(B) = 0.4 \times 0.6$$
 (A1)

$$x=0.24$$

[4 marks]

(b) Find
$$P(A \mid B \mid)$$
.

Markscheme

METHOD 1

recognising
$$\mathrm{P}(A\prime | B\prime) = \mathrm{P}(A\prime)$$
 (M1)

$$= 1 - 0.16 - 0.24$$

$$=0.6$$
 A1

[2]

METHOD 2

$$P(B)=0.36+0.24(=0.6)$$

$$P(A\prime | B\prime)=\frac{P(A\prime \cap B\prime)}{P(B\prime)}\ \left(=\frac{0.24}{0.4}\right) \hspace{0.5cm} \text{(A1)}$$

$$=0.6 \hspace{0.5cm} \text{A1}$$

[2 marks]

Events A and B are independent and $\mathrm{P}(A)=3\mathrm{P}(B)$.

Given that
$$\mathrm{P}(A \cup B) = 0.68$$
, find $\mathrm{P}(B)$.

[6]

Markscheme

$$P(A \cup B) = P(A) + P(B) - P(A \cap B) = 0.68$$

substitution of $\operatorname{P}(A)\cdot\operatorname{P}(B)$ for $\operatorname{P}(A\cap B)$ in $\operatorname{P}(A\cup B)$ (M1)

$$P(A) + P(B) - P(A)P(B) = 0.68$$

substitution of 3P(B) for P(A) (M1)

$$3P(B) + P(B) - 3P(B)P(B) = 0.68$$
 (or equivalent) (A1)

Note: The first two *M* marks are independent of each other.

attempts to solve their quadratic equation (M1)

$$P(B) = 0.2, 1.133... \left(\frac{1}{5}, \frac{17}{15}\right)$$

$$P(B) = 0.2 \left(= \frac{1}{5}\right)$$
 A2

Note: Award **A1** if both answers are given as final answers for $\mathrm{P}(B)$.

[6 marks]

3. [Maximum mark: 8]

21M.2.SL.TZ2.4

At a school, 70% of the students play a sport and 20% of the students are involved in theatre. 18% of the students do neither activity.

A student is selected at random.

(a) Find the probability that the student plays a sport and is involved in theatre.

[2]

Markscheme

EITHER

$$\mathrm{P}(S)+\mathrm{P}(T)+\mathrm{P}(S\prime\cap T\prime)-\mathrm{P}(S\cap T)=1$$
 or $\mathrm{P}(S\cup T)=\mathrm{P}((S\prime\cap T\prime)')$ (M1)

$$0.7 + 0.2 + 0.18 - \mathrm{P}(S \cap T) = 1 \; \mathrm{OR} \ \mathrm{P}(S \cup T) = 1 - 0.18$$

OR

a clearly labelled Venn diagram (M1)

THEN

$$P(S \cap T) = 0.08$$
 (accept 8%) A1

Note: To obtain the *M1* for the Venn diagram all labels must be correct and in the correct sections. For example, do not accept 0.7 in the area corresponding to $S\cap T$.

[2 marks]

(b) Find the probability that the student is involved in theatre, but does not play a sport.

[2]

Markscheme

EITHER

$${
m P}(T\cap S\prime)={
m P}(T)-{
m P}(T\cap S)(=0.\,2-0.\,08)$$
 or ${
m P}(T\cap S\prime)={
m P}(T\cup S)-{
m P}(S)(=0.\,82-0.\,7)$ (M1)

OR

a clearly labelled Venn diagram including $\mathrm{P}(S)$, $\mathrm{P}(T)$ and $\mathrm{P}(S\cap T)$ (M1)

THEN

$$=0.12$$
 (accept 12%) A1

[2 marks]

At the school 48% of the students are girls, and 25% of the girls are involved in theatre.

A student is selected at random. Let G be the event "the student is a girl" and let T be the event "the student is involved in theatre".

(c) Find
$$P(G \cap T)$$
.

[2]

Markscheme

$$\mathrm{P}(G\cap T)=\mathrm{P}(T/G)\mathrm{P}(G) \ \ (0.25 imes0.48)$$
 (M1)

=0.12

[2 marks]

(d) Determine if the events ${\cal G}$ and ${\cal T}$ are independent. Justify your answer.

[2]

Markscheme

METHOD 1

$${
m P}(G) imes {
m P}(T) (=0.48 imes 0.2) = 0.096$$
 A1

$$\mathrm{P}(G) imes \mathrm{P}(T)
eq \mathrm{P}(G \cap T) \Rightarrow G$$
 and T are not independent $m{R1}$

METHOD 2

$$P(T|G) = 0.25$$

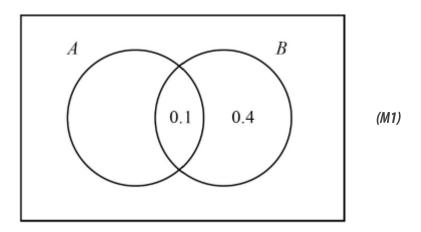
$$\operatorname{P}(T|G)
eq \operatorname{P}(T) \Rightarrow G$$
 and T are not independent $extit{ extit{R1}}$

Note: Do not award *A0R1*.

[2 marks]

4. [Maximum mark: 6]

18N.1.AHL.TZ0.H_1


[3]

Consider two events, A and B, such that $\mathrm{P}\,(A)=\mathrm{P}\,(A'\cap B)=0.4$ and $\mathrm{P}\,(A\cap B)=0.1.$

(a) By drawing a Venn diagram, or otherwise, find $\mathrm{P}\,(A\cup B)$.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

Note: Award *M1* for a Venn diagram with at least one probability in the correct region.

EITHER

$$P(A \cap B') = 0.3$$
 (A1)

$$P(A \cup B) = 0.3 + 0.4 + 0.1 = 0.8$$
 A1

OR

$$P(B) = 0.5$$
 (A1)

$$P(A \cup B) = 0.5 + 0.4 - 0.1 = 0.8$$
 A1

(b) Show that the events \boldsymbol{A} and \boldsymbol{B} are not independent.

[3]

Markscheme

METHOD 1

$$\mathrm{P}\left(A\right)\!\mathrm{P}\left(B\right)=0.4 imes0.5$$
 (M1)

statement that their $\mathrm{P}\left(A
ight)\mathrm{P}\left(B
ight)
eq \mathrm{P}\left(A\cap B
ight)$. R1

Note: Award *R1* for correct reasoning from their value.

 \Rightarrow A, B not independent $\ \emph{AG}$

METHOD 2

$$\mathrm{P}\left(A|B
ight)=rac{\mathrm{P}(A\cap B)}{\mathrm{P}(B)}=rac{0.1}{0.5}$$
 (M1)

$$= 0.2$$
 A1

statement that their $\mathrm{P}\left(A|B
ight)
eq \mathrm{P}\left(A
ight)$ R1

Note: Award *R1* for correct reasoning from their value.

 \Rightarrow A, B not independent AG

Note: Accept equivalent argument using $\mathrm{P}\left(B|A\right)=0.25.$

[3 marks]

© International Baccalaureate Organization, 2024