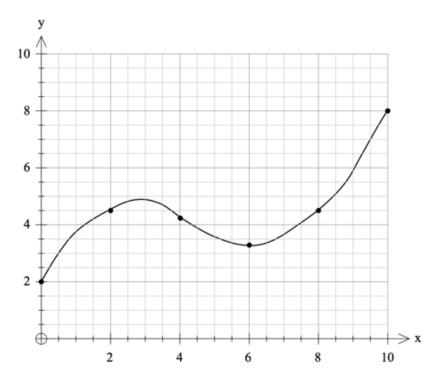
Area under graph [46 marks]

1. [Maximum mark: 10]

The curve $y=f\left(x\right)$ is shown in the graph, for $0\leqslant x\leqslant 10$.



The curve $y=f\left(x\right)$ passes through the following points.

X	0	2	4	6	8	10
у	2	4.5	4.2	3.3	4.5	8

It is required to find the area bounded by the curve, the x-axis, the y-axis and the line x=10.

(a) Use the trapezoidal rule to find an estimate for the area.

Markscheme

Area =
$$\frac{2}{2}(2 + 2(4.5 + 4.2 + 3.3 + 4.5) + 8)$$
 M1A

Area = 43 **A1**

[3 marks]

One possible model for the curve $y=$	f ((x)) is a cubic function.
---------------------------------------	-----	-----	------------------------

(b.i) Use all the coordinates in the table to find the equation of the least squares cubic regression curve.

[3]

Markscheme

$$y = 0.0389x^3 - 0.534x^2 + 2.06x + 2.06$$
 M1A2

[3 marks]

(b.ii) Write down the coefficient of determination.

[1]

Markscheme

$$R^2 = 0.991$$
 A1

[1 mark]

(c.i) Write down an expression for the area enclosed by the cubic regression curve, the x-axis, the y-axis and the line x=10.

[1]

Markscheme

Area =
$$\int\limits_0^{10} y\,dx$$
 A1

[1 mark]

(c.ii) Find the value of this area.

[2]

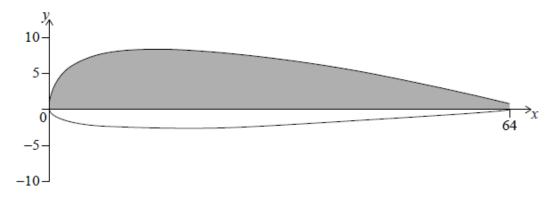
Markscheme

42.5 **A2**

[2 marks]

2. [Maximum mark: 12]

Jan is investigating the shape of model helicopter propeller blades. A cross-section of one of the blades is shown, graphed on the coordinate axes.



The shaded part of the cross-section is the area between the x-axis and the curve with equation

$$y=4\sqrt{x}-rac{x}{2}+1$$
, for $0\leq x\leq 64$

where x is the distance, in mm, from the edge of the blade and y is the height, in mm, above the horizontal axis through the blade, as shown in the diagram.

(a) Find the values of a, b and c, shown in the table.

x (mm)	0	16	32	48	64
y (mm)	1	а	ь	С	1

Markscheme

$$(a =) 9$$
 A1

$$(b=)$$
 7.63 $(7.62741...)$ A

$$(c=) \ 4.71 \ (4.71281\ldots)$$

[3 marks]

Jan uses the trapezoidal rule with four intervals to estimate the shaded area of the cross-section of the blade.

(b) Find Jan's estimate of the shaded area of the cro	oss-section.
---	--------------

[3]

Markscheme

attempt to use the trapezoidal rule (M1)

$$(\text{area} =) \frac{1}{2}(16)((1 + 1) + 2(9 + 7.62741... + 4.71281...))$$

$$(area =) 357 (mm2) (357.443...)$$

[3 marks]

(c.i) Write down the integral that Jan can use to find the exact area of the shaded part of the cross-section.

[2]

Markscheme

$$\int_0^{64} \left(4\sqrt{x} - \frac{x}{2} + 1\right) dx$$
 A1A1

Note: Award *A1* for correct function seen within the integral and *A1* for correct limits in the correct location and the inclusion of the $d\,x$.

[2 marks]

(c.ii) Hence, use your graphic display calculator to find the area of the shaded part of the cross-section. Give your answer correct to one decimal place.

[2]

Markscheme

$$405.3 \, (\mathrm{mm^2})$$
 A2

[2 marks]

(d) Calculate the percentage error of Jan's estimate in part (b).

[2]

Markscheme

attempt to substitute **their** area values into the percentage error formula

(M1)

$$\left| \frac{357.443...-405.3}{405.3} \right| \times 100$$

$$11.8(\%) \ (11.8076...)$$

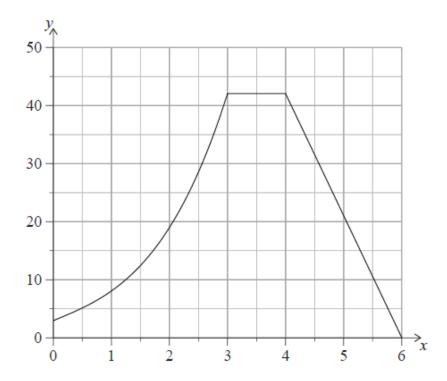
Note: Accept an answer of 11.9 from use of 357 from part (b).

A1

[2 marks]

3. [Maximum mark: 9]

An engineer wants to calculate the cross-sectional area of a dam. The cross-section of the dam can be modelled by a curve and two straight lines as shown in the following diagram, where distances are measured in metres.



The curve is modelled by a function f(x). The following table gives values of f(x) for different values of x in the interval $0 \le x \le 3$.

$oldsymbol{x}$	0	0.5	1	1.5	2	2.5	3
y = f(x)	3	5.13	8	12.4	19	28.6	42

(a) Calculate an estimate for the area in the interval $0 \le x \le 3$ by using the trapezoidal rule with three equal intervals.

[2]

Markscheme

attempt at using the trapezoidal rule (M1)

area
$$= rac{1}{2} ig(3 + 2 ig(8 + 19 ig) + 42 ig)$$
 $= 49.5 \ ig(m^2 ig)$ A1

[2 marks]

It is known that $f\prime (x) = 3x^2 + 4$ in the domain 0 < x < 3.

(b) Find an expression for f(x), in the domain 0 < x < 3.

[4]

Markscheme

recognition of need to integrate (e.g. reverse power rule or integral symbol) (M1)

$$\int 3x^2 + 4\operatorname{d} x = x^3 + 4x + c$$
 (A1)(A1)

Note: Award A1 for each correct term.

$$f(x) = x^3 + 4x + 3 \qquad \text{A1}$$

Note: Award **A1** for simplified correct answer including the value of c. Accept a value of c of 3.005 or 3.025 or 2.975 for using the non-integer x-values and their corresponding y-values.

(c) **Hence** find the actual area of the **entire** cross-section.

Markscheme

METHOD 1

forming expression for sum of integral and deconstructing the trapezoid into a rectangle and triangle (M1)

$$\int_0^3 x^3 + 4x + 3 \ \mathrm{d}\,x \Big(= 47.25 \Big) + 42 imes 1 + rac{1}{2} imes 2 imes 42 \Big(= 84 \Big)$$
 (A1) $= 131 \ \mathrm{(m^2)} \ (131.25)$ A1

METHOD 2

forming expression for sum of integral and trapezoid (M1)

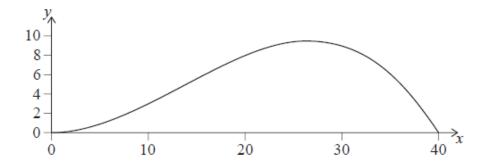
$$\int_0^3 x^3 + 4x + 3 \, \mathrm{d} \, x \Big(= 47.25 \Big) + rac{1}{2} imes 4 imes 42 \Big(= 84 \Big)$$
 (A1) $= 131 \; ig(\mathrm{m}^2 ig) \; ig(131.25 ig)$ A1

Note: Award (A1) for their integral with the correct limits added to 84 or their $47.\,25$ added to 84.

[3 marks]

4. [Maximum mark: 8]

The cross section of a scale model of a hill is modelled by the following graph.



The heights of the model are measured at horizontal intervals and are given in the table.

Horizontal distance, $x\mathrm{cm}$	0	10	20	30	40
Vertical distance, $y\mathrm{cm}$	0	3	8	9	0

(a) Use the trapezoidal rule with h=10 to find an approximation for the cross-sectional area of the model.

Markscheme

attempt to substitute h=10 and at least two different values of γ into the trapezoidal rule $\it (M1)$

$$\tfrac{10}{2}\big(\big(0+0\big)+2\big(3+8+9\big)\big)$$

$$=200~(\mathrm{cm}^2)$$
 A1

[2 marks]

It is given that the equation of the curve is $y=0.04x^2-0.001x^3,~0\leq x\leq 40.$

(b.i) Write down an integral to find the exact cross-sectional area.

Markscheme

$$\int_0^{40} 0.\,04x^2 - 0.\,001x^3 \mathrm{d}\,x$$
 or $\int_0^{40} y \,\mathrm{d}\,x$ atam

[2]

[2]

Note: Award **A1** for a correct integral (including dx), **A1** for correct limits in the correct location.

[2 marks]

(b.ii) Calculate the value of the cross-sectional area to two decimal places.

[2]

Markscheme

$$213.33~\mathrm{(cm^2)}$$

Note: Answer must be given to 2 decimal places to award **A2**. Award **A1A0** for a correct answer given to an incorrect accuracy of at least 3 significant figures, e.g. $213 \text{ (cm}^2)$.

[2 marks]

(c) Find the percentage error in the area found using the trapezoidal rule.

[2]

Markscheme

attempt to substitute their parts (a) and (b)(ii) into percentage error formula (M1)

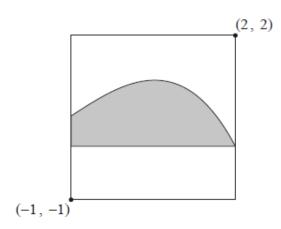
$$ig|rac{213.333...-200}{213.333...}ig| imes 100 \ = 6.25(\%) \; (6.23999...(\%))$$

Note: Award *(M1)A0* for a final answer of -6.25(%) or 0.0625.

[2 marks]

5. [Maximum mark: 7]

A modern art painting is contained in a square frame. The painting has a shaded region bounded by a smooth curve and a horizontal line.



When the painting is placed on a coordinate axes such that the bottom left corner of the painting has coordinates $(-1,\ -1)$ and the top right corner has coordinates $(2,\ 2)$, the curve can be modelled by y=f(x) and the horizontal line can be modelled by the x-axis. Distances are measured in metres.

(a) Use the trapezoidal rule, with the values given in the following table, to approximate the area of the shaded region.

х	-1	0	1	2
y	0.6	1.2	1.2	0

Markscheme

$$rac{1}{2}(0.6+0+2(1.2+1.2))$$
 (A1)(M1)

Note: Award *A1* for evidence of h=1, *M1* for a correct substitution into trapezoidal rule (allow for an incorrect h only). The zero can be omitted in the working.

$$2.7 \mathrm{m}^2$$
 A1

[3 marks]

The artist used the equation $y=rac{-x^3-3x^2+4x+12}{10}$ to draw the curve.

(b) Find the exact area of the shaded region in the painting.

[2]

Markscheme

$$\int_{-1}^2 rac{-x^3-3x^2+4x+12}{10} \; \mathrm{d} \; x \; \; \mathsf{OR} \; \int_{-1}^2 f(x) \; \mathrm{d} \; x \; \; \; \;$$
 (M1)

Note: Award *M1* for using definite integration with correct limits.

$$2.925 \text{ m}^2$$
 A1

Note: Question requires exact answer, do not award final $\emph{A1}$ for 2.93.

[2 marks]

(c) Find the area of the unshaded region in the painting.

[2]

Markscheme

$$9 - 2.925$$
 (M1)

Note: Award $\emph{M1}$ for 9 seen as part of a subtraction.

$$= 6.08 \ m^2 \ (6.075)$$
 A1

[2 marks]