Area under graph [46 marks]

1. [Maximum mark: 10] The curve $y=f\left(x
ight)$ is shown in the graph, for $0\leqslant x\leqslant 10.$

The curve $y=f\left(x
ight)$ passes through the following points.

X	0	2	4	6	8	10
у	2	4.5	4.2	3.3	4.5	8

It is required to find the area bounded by the curve, the x-axis, the y-axis and the line x=10.

One possible model for the curve $y=f\left(x
ight)$ is a cubic function.

(b.i) Use all the coordinates in the table to find the equation of the least squares cubic regression curve. [3]

[1]

(b.ii) Write down the coefficient of determination.

(c.i)	Write down an expression for the area enclosed by the cubic regression		
	curve, the x -axis, the y -axis and the line $x=10$.	[1]	
(c.ii)	Find the value of this area.	[2]	

- **2.** [Maximum mark: 12]

Jan is investigating the shape of model helicopter propeller blades. A cross-section of one of the blades is shown, graphed on the coordinate axes.

The shaded part of the cross-section is the area between the x-axis and the curve with equation

$$y=4\sqrt{x}-rac{x}{2}+1$$
 , for $0\leq x\leq 64$

where x is the distance, in mm, from the edge of the blade and y is the height, in mm, above the horizontal axis through the blade, as shown in the diagram.

(a)	Find the values of a, b and c , shown in the table.
-----	---

<i>x</i> (mm)	0	16	32	48	64
y (mm)	1	а	Ь	с	1

Jan uses the trapezoidal rule with four intervals to estimate the shaded area of the crosssection of the blade.

(b) Find Jan's estimate of the shaded area of the cross-section.

[3]

(c.i)	Write down the integral that Jan can use to find the exact area of the	[0]
	shaded part of the cross-section.	[2]
(c.ii)	Hence, use your graphic display calculator to find the area of the	
	shaded part of the cross-section. Give your answer correct to one	
	decimal place.	[2]
(d)	Calculate the percentage error of Jan's estimate in part (b).	[2]

3. [Maximum mark: 9]

An engineer wants to calculate the cross-sectional area of a dam. The cross-section of the dam can be modelled by a curve and two straight lines as shown in the following diagram, where distances are measured in metres.

The curve is modelled by a function f(x). The following table gives values of f(x) for different values of x in the interval $0\leq x\leq 3$.

y =	= $oldsymbol{f}(oldsymbol{x})$	3	5.13	8	12.4	19	28.6	42
(a)	(a) Calculate an estimate for the area in the interval $0 \leq x \leq 3$ by using the trapezoidal rule with three equal intervals.							[2]
It is known that $f\primeig(xig) = 3x^2 + 4$ in the domain $0 < x < 3.$								
(b)	Find an e	xpression) for $f(x)$, in tl	he domair	n 0 < x < 3.			[4]
(c)	Hence fir	nd the act	ual area of the	entire cro	oss-section.			[3]

4. [Maximum mark: 8]The cross section of a scale model of a hill is modelled by the following graph.

The heights of the model are measured at horizontal intervals and are given in the table.

Horizontal distance, $x{ m cm}$	0	10 20	30	40
Vertical distance, $y\mathrm{cm}$	0	3 8	9	0

(a) Use the trapezoidal rule with h=10 to find an approximation for the cross-sectional area of the model.

It is given that the equation of the curve is $y=0.\,04x^2-0.\,001x^3,\ 0\leq x\leq 40.$

[2]

(b.i)	Write down an integral to find the exact cross-sectional area.	[2]
(b.ii)	Calculate the value of the cross-sectional area to two decimal places.	[2]
(c)	Find the percentage error in the area found using the trapezoidal rule.	[2]

5. [Maximum mark: 7]

A modern art painting is contained in a square frame. The painting has a shaded region bounded by a smooth curve and a horizontal line.

diagram not to scale

When the painting is placed on a coordinate axes such that the bottom left corner of the painting has coordinates (-1, -1) and the top right corner has coordinates (2, 2), the curve can be modelled by y = f(x) and the horizontal line can be modelled by the x-axis. Distances are measured in metres.

(a) Use the trapezoidal rule, with the values given in the following table, to approximate the area of the shaded region.

x	-1	0	1	2
у	0.6	1.2	1.2	0

[3]

The artist used the equation $y=rac{-x^3-3x^2+4x+12}{10}$ to draw the curve.

(b) Find the exact area of the shaded region in the painting.

[2]

(c) Find the area of the unshaded region in the painting.

© International Baccalaureate Organization, 2024