INTERNATIONAL BACCALAUREATE

Mathematics: analysis and approaches

MAA

EXERCISES [MAA 2.11-2.12] POLYNOMIALS

Compiled by Christos Nikolaidis

Ο.	Prac	tice questions	
1.	[Max	kimum mark: 8]	
	Con	sider the cubic function $f(x) = ax^3 + 2x^2 + 3x + 4$. Find the value of a in each of the	
	follo	wing cases	
	(a)	the graph of the function passes through the point (1,10).	[2]
	(b)	f(x) is divisible by $(x-1)$.	[2]
	(c)	when $f(x)$ is divided by $(x-1)$, the remainder is 10.	[2
	(d)	Confirm the result in (c) by using long division.	[2

2*.	[Maxi	ximum mark: 13] <i>[without GDC]</i>				
	Cons	ider the cubic function $f(x) = ax^3 + bx^2 + 3x + 4$. Find the values of a and b in				
	each	of the following cases				
	(a)	f(x) is divisible by $(x-1)$ and leaves a remainder 6 when divided by $(x+1)$.	[4]			
	(b)	$f(x)$ is divisible by (x^2-1) .	[4]			
	(c)	$f(x)$ leaves a remainder $-3x+3$ when divided by (x^2-1) .	[5]			

3.	[Max	ximum mark: 10]	[with / without GDC]	
	Con	sider the cubic fun	ection $f(x) = 2x^3 + ax^2 + bx + c$. Find the values of a,b,c	
	(a) (b)		e function passes through the points $(1,0)$, $(-1,2)$, and $(0,3)$. e function passes through the points $(1,0)$, $(-1,0)$, and $(3,0)$.	[5 [5

livia	ximum mark: 8]	
	sider the polynomial $f(x) = 4x^3 - 4x^2 - 5x + 3$.	
(a)	Show that $x = -1$ is a root of $f(x)$.	
(b)	Find the other two roots of $f(x)$ by using long division.	
(c)	Express the polynomial in the form $f(x) = (x - a)(bx - c)(dx - e)$, where	
	$a,b,c,d,e\in Z$.	

5.	[Maximum mar	k: 12]	[without	GDC]
----	--------------	--------	----------	------

Complete the following table: for each polynomial find the sum and the product of the roots (allowing non-real roots and repetition of roots) as well as the remainder when the polynomial is divided by (x-1).

Polynomial	Sum of roots	Product of roots	Remainder by $(x-1)$
$f(x) = 2x^4 + 6x^3 + 5x^2 - 7x + 8$			
$f(x) = 2x^5 + 6x^3 + 5x^2 - 7x + 8$			
$f(x) = x^{10} - x^9 - 1$			

6. [Maximum mark: 4] **[without GDC]**

Consider the cubic function $f(x) = ax^3 + 2x^2 + 3x + 4$.

- (a) Find the value of a if the sum of the roots of the cubic polynomial is 10. [2]
- (b) Find the value of *a* if the product of the roots of the cubic polynomial is 10. [2]

.....

7. [Maximum mark: 4] [without GDC]

Consider the cubic function $f(x) = ax^3 + bx^2 + 3x + 4$. Find the values of a and b given that the sum of the roots is 10 and the product of the roots is 12

8*.	[Max	imum mark: 14]	[without GDC]			
	The	polynomial $f(x)$ =	$= x^3 - 7x^2 + ax - 9$ is div	visible by $(x-1)$.		
	(a)	Find the value of	<i>a</i> .			[3]
	(b)	Give full factoriza	ation of $f(x)$.			[5]
	(c)	Solve the inequa	lities			
		(i) f(x) > 0	(ii) $f(x) < 0$	(iii) $f(x) \ge 0$	(iv) $f(x) \le 0$	[6]
						-
						-
						-
						-
						-
						-
						-
						<u>-</u>
						<u>-</u>
						-

A. Exam style questions (SHORT)

COII	sider $f(x) = x^3 - 2x^2 - 5x + k$. Find the value of k if $(x+2)$ is a factor of $f(x)$
_	ximum mark: 4] [without GDC]
Whe	en the function $f(x) = 6x^4 + 11x^3 - 22x^2 + ax + 6$ is divided by $(x+1)$ the remain
is –2	20. Find the value of a .
[Maː	ximum mark: 4]
Whe	en $x^4 + ax + 3$ is divided by $(x-1)$, the remainder is 8. Find the value of a .

12.	[Max	imum mark: 10] <i>[without GDC]</i>	
	The	polynomial $p(x) = x^3 + ax^2 - 3x + b$ is divisible by $(x-2)$ and has a remainder 6	
	wher	n divided by $(x+1)$.	
	(a)	Find the value of a and of b .	[5]
	(b)	Factorise completely $p(x)$ and state its roots.	[5]

13*.	[Max	ximum mark: 6]	[without GDC]	
	The	polynomial $p(x) =$	$=(ax+b)^3$ leaves a remainder of -1 when divided by $(x+1)$, and	
	a rei	mainder of 27 whe	en divided by $(x-2)$. Find the values of a and b .	
14.	[Max	ximum mark: 6]	[without GDC]	
			= $x^3 + 3x^2 + ax + b$ leaves the same remainder when divided by	
	(<i>x</i> –	2) as when divide	ed by $(x+1)$.	
	(a)	Find the value of	f <i>a</i> .	5]
	(b)	State the possible	le values of b .	1]

15.	[Max	ximum mark: 7]	
	Give	en that $(x-2)$ and $(x+2)$ are factors of $f(x) = x^3 + px^2 + qx + 4$,	
	(a)	find the value of p and of q .	[5]
	(b)	solve the equation $f(x) = 0$.	[2]
16.		ximum mark: 7] <i>[without GDC]</i> polynomial $P(x) = 2x^3 + ax^2 - 4x + b$ is divisible by $(x-1)$ and by $(x+3)$.	
	(a)	Find the value of a and of b .	[5]
	(b)	Factorise $f(x)$.	[2]

17.	[Max	rimum mark: 8]	
	The polynomial $x^2 - 4x + 3$ is a factor of $x^3 + (a-4)x^2 + (3-4a)x + 3$.		
	(a)	Calculate the value of the constant a .	[4]
	(b)	Factorise completely the cubic polynomial.	[2]
	(c)	Find the remainder when the cubic is divided by $(x-2)$.	[2]

18.	[Maximum mark: 6] [with GDC]
	When $P(x) = 4x^3 + px^2 + qx + 1$ is divided by $(x-1)$ the remainder is -2 . When $P(x)$
	is divided by $(2x-1)$ the remainder is $\frac{13}{4}$. Find the value of p and of q .
10*	[Maximum mark: 7]
19*.	[Maximum mark: 7] [with GDC] When $R(x) = 4x^3 + xx^2 + xx + 1$ is divided by $(x - 1)(2x - 1)$ the remainder is $17 - 21x$
19*.	When $P(x) = 4x^3 + px^2 + qx + 1$ is divided by $(x-1)(2x-1)$ the remainder is $\frac{17-21x}{2}$
19*.	
19*.	When $P(x) = 4x^3 + px^2 + qx + 1$ is divided by $(x-1)(2x-1)$ the remainder is $\frac{17-21x}{2}$
19*.	When $P(x) = 4x^3 + px^2 + qx + 1$ is divided by $(x-1)(2x-1)$ the remainder is $\frac{17-21x}{2}$. Find the value of p and of q .
19*.	When $P(x) = 4x^3 + px^2 + qx + 1$ is divided by $(x-1)(2x-1)$ the remainder is $\frac{17-21x}{2}$. Find the value of p and of q .
19*.	When $P(x) = 4x^3 + px^2 + qx + 1$ is divided by $(x-1)(2x-1)$ the remainder is $\frac{17-21x}{2}$. Find the value of p and of q .
19*.	When $P(x) = 4x^3 + px^2 + qx + 1$ is divided by $(x-1)(2x-1)$ the remainder is $\frac{17-21x}{2}$. Find the value of p and of q .
19*.	When $P(x) = 4x^3 + px^2 + qx + 1$ is divided by $(x-1)(2x-1)$ the remainder is $\frac{17-21x}{2}$. Find the value of p and of q .
19*.	When $P(x) = 4x^3 + px^2 + qx + 1$ is divided by $(x-1)(2x-1)$ the remainder is $\frac{17-21x}{2}$. Find the value of p and of q .
19*.	When $P(x) = 4x^3 + px^2 + qx + 1$ is divided by $(x-1)(2x-1)$ the remainder is $\frac{17-21x}{2}$. Find the value of p and of q .
19*.	When $P(x) = 4x^3 + px^2 + qx + 1$ is divided by $(x-1)(2x-1)$ the remainder is $\frac{17-21x}{2}$. Find the value of p and of q .

20.	[Max	aximum mark: 8]					
	The	The polynomial $f(x) = x^3 - 4x^2 + 3x + a$ is divisible by $(x-1)$.					
	(a)	Find the value of a .	[3]				
	(b)	Give full factorization of $f(x)$.	[3]				
	(c)	Solve the inequality $f(x) \le 0$.	[2]				
21.		[Maximum mark: 8] [without GDC]					
		e polynomial $f(x) = x^3 - 2x^2 + x + a$ is divisible by $(x-1)$.					
	(a)		[3]				
	(b)		[3]				
	(c)	Solve the inequality $f(x) \le 0$.	[2]				

22.	[Max	kimum mark: 8] [without GDC]				
	Whe	en $f(x) = x^3 + x^2 + x + a$ is divided by $(x-1)$ the remainder is 3.				
	(a)	Find the value of a .	[3]			
	(b)	Give full factorization of $f(x)$.	[3]			
	(c)	Solve the inequality $f(x) \le 0$.	[2]			
23.	[Max	[Maximum mark: 6] [without GDC]				
	The	The polynomial $f(x) = 3x^3 - a$ is divisible by $(x-1)$.				
	(a)	Find the value of a .	[3]			
	(b)	Solve the inequality $f(x) \le 0$.	[3]			

24.	[Max	ximum mark: 6]	
	Let	α, β be the non-real roots of the quadratic $y = 2x^2 + 4x + 6$	
	(a)	Write down the values of (i) $\alpha + \beta$ (ii) $\alpha \beta$.	[2]
	(b)	Find the value of $\alpha^2 + \beta^2$.	[2]
	(c)	Find the value of $(\alpha - \beta)^2$.	[2]
25	[Max	simula marks 61 Swithaut CDCI	
25.	_	ximum mark: 6] [without GDC] α, β be the non-real roots of the quadratic $y = 2x^2 + 4x + 6$.	
		I a quadratic with roots $\alpha^2 \beta$ and $\alpha \beta^2$	
	FING	ra quadratic with roots $ \alpha /p$ and $ \alpha p $	

[without GDC]

[Maximum mark: 7]

26.

(a)	Find the value of $\alpha^2 + \beta^2$
(b)	Find a quadratic with integer coefficients and roots $\frac{\alpha}{\beta}$ and $\frac{\beta}{\alpha}$.
	simum mark: 6] [without GDC] roots α and β of the quadratic equation $x^2 - kx + (k+1) = 0$
The	simum mark: 6] [without GDC] roots α and β of the quadratic equation $x^2 - kx + (k+1) = 0$ such that $\alpha^2 + \beta^2 = 13$. Find the possible values of the real number k .
The	roots α and β of the quadratic equation $x^2 - kx + (k+1) = 0$
The	roots α and β of the quadratic equation $x^2 - kx + (k+1) = 0$
The	roots α and β of the quadratic equation $x^2 - kx + (k+1) = 0$
The	roots α and β of the quadratic equation $x^2 - kx + (k+1) = 0$ such that $\alpha^2 + \beta^2 = 13$. Find the possible values of the real number k .
The	roots α and β of the quadratic equation $x^2 - kx + (k+1) = 0$ such that $\alpha^2 + \beta^2 = 13$. Find the possible values of the real number k .
The	roots α and β of the quadratic equation $x^2 - kx + (k+1) = 0$ such that $\alpha^2 + \beta^2 = 13$. Find the possible values of the real number k .
The	roots α and β of the quadratic equation $x^2 - kx + (k+1) = 0$ such that $\alpha^2 + \beta^2 = 13$. Find the possible values of the real number k .

B. Exam style questions (LONG)

D.	LXaII	i style questions (LONG)				
28.	[Maximum mark: 12] [without GDC]					
	The	polynomial $f(x) = x^4 + ax^3 + bx^2 + cx + d$ is divisible by $x^2 - 3x + 2$.				
	The	sum of its roots is 7 and the product of its roots is 0.				
	(a)	Find the values of a , b , c and d .	[8]			
	(b)	Factorize $f(x)$.	[4]			

29.	[Max	imum mark: 10]	
	The polynomial $f(x) = x^4 - 2x^3 + ax^2 + bx + 3$ is divisible by $(x-1)$ and the quotient of the division is the polynomial $q(x)$.		
	(a)	Find the sum and the product of the roots of $f(x)$.	[2]
	(b)	State the degree of $q(x)$.	[1]
	(c)	Find the sum of a and b .	[3]
	(d)	The sum and the product of the roots of $q(x)$.	[4]

30.	[Max	ximum mark: 12]	
	Let	$f(x) = ax^4 + bx^3 + cx^2 + dx + 16.$	
		The sum and the product of the roots of $f(x)$ are both 8.	
		f(x) is divisible by $(x-1)$ and $f(x) = (x-1)q(x)$.	
		When $f(x)$ is divided by $(x+1)$ the remainder is 120.	
	(a)	Find the values of a and b .	[3]
	(b)	Find the values of c and d .	[5]
	(c)	Find the sum and the product of the roots of $q(x)$.	[4]

(a)	α, β be the roots of the quadra Write down the values of	atic $f(x) = 5x^2 - 2x - 4$. Without finding α and β (i) $\alpha + \beta$ (ii) $\alpha\beta$.	[
(b)	Find the values of	(i) $\alpha^2 + \beta^2$ (ii) $\alpha^3 + \beta^3$	
(c)		coefficients which has roots $\frac{1}{\alpha}, \frac{1}{\beta}$.	[
(d)	Find a quadratic with integer of	coefficients and roots $lpha^2$ and $oldsymbol{eta}^2$	[
(e)	Find a quadratic with integer of	coefficients and roots $lpha^{\scriptscriptstyle 3}$ and $eta^{\scriptscriptstyle 3}$	[

32*. [Maximum mark: 16] [without GDC]

For a cubic function $ax^3 + bx^2 + cx + d$ with roots r_1, r_2, r_3 , it is given that

$$S_1 = r_1 + r_2 + r_3 = -\frac{b}{a}$$
, $S_2 = r_1 r_2 + r_2 r_3 + r_3 r_1 = \frac{c}{a}$, $S_3 = r_1 r_2 r_3 = -\frac{d}{a}$

Let α, β, γ be the roots of the cubic function $f(x) = x^3 - 5x^2 - 7x + 3$

Without evaluating the roots α, β, γ , find

(a)
$$\alpha + \beta + \gamma$$
, $\alpha\beta + \beta\gamma + \gamma\alpha$ and $\alpha\beta\gamma$. [3]

(b)
$$\alpha^2 + \beta^2 + \gamma^2$$
. [4]

(c)
$$(\alpha\beta)^2 + (\beta\gamma)^2 + (\gamma\alpha)^2$$
. [5]

(d)	a cubic polynomial which has roots $\alpha^2, \beta^2, \gamma^2$.	[4]
-----	--	-----

33*.	_	simum mark: 15] <i>[with GDC]</i>	
	Cons	• • • •	
		$f(x) = (x-1)(x^2 + (2-k)x + k^2)$	
	(a)	Show that $x = 1$ cannot be a root of the quadratic factor $(x^2 + (2 - k)x + k^2)$.	[4]
	(b)	Find the values of k in each of the following cases	
		(i) if the polynomial has exactly one real root;	
		(ii) if the polynomial has exactly two distinct real roots;	
		(iii) if the polynomial has three distinct real roots.	[7]
	(c)	Find the roots of $f(x)$ for each value of k in case (b)(ii).	[4]