INTERNATIONAL BACCALAUREATE

Mathematics: analysis and approaches

MAA

EXERCISES [MAA 2.16] SYMMETRIES OF FUNCTIONS – MORE TRANSFORMATIONS

Compiled by Christos Nikolaidis

Ο.	Pract	ice questions	
1.	_	rimum mark: 9] <i>[without GDC]</i> remine whether the following function are even , odd or neither . Prove your claim.	
	(a)	$f(x) = 3x^4 - 5x^2 + 1$	[2]
		$f(x) = 3x^5 - 5x^3 + 1$	[2]
		$f(x) = 3x^5 - 5x^3 + 7x$	[2]
	(d)	$f(x) = \frac{5x^6 + 3 x - 1}{x^3 + x}$	[3]

The diagrams below show the graph of y = f(x) which passes through the point A(0,2).

On the same diagrams, sketch the graphs of the following transformations and for each transformation state the image A´ of point A.

(a) y = f(x) - 2

Image of A(0,2): _____

(b) y = f(x-2)

Image of A(0,2): _____

Image of A(0,2): _____

[3]

(d)
$$y = f\left(\frac{x}{2}\right)$$

Image of A(0,2): _____

[3]

(e) y = f(2x)

Image of A(0,2): _____

(f) y = -f(x)

Image of A(0,2): _____

[3]

y = f(-x)(g)

Image of A(0,2): _____

[3]

y = |f(x)|(h)

Image of A(0,2): _____

(i) y = f(|x|)

Image of A(0,2): _____

[3]

(j) y = f(|x|-1)

Images of A(0,2): _____

[5]

(k) y = f(|x-1|)

Image of A(0,2): _____

[4]

$$Let f(x) = \frac{2x-4}{x+2}$$

(a) Complete the following table

Function	y = f(x)	$y = \frac{1}{f(x)}$	$y = f^{-1}(x)$
Domain			
Range			

[6]

[4]

[3]

(b) Find the image of the horizontal asymptote y = 2 of f(x), under the following transformations:

Transformation	2f(x)	f(x)+2	f(x-7)	-f(x)	$\frac{1}{f(x)}$
Horizontal asymptote					

(c) The point A(3, 0.4) lies on the graph of f(x). Find the image of the point A under the transformation y = 2f(3x) + 5. [2]

.....

(d) Sketch the graph of f(x) by indicating any asymptotes and intersections with x - and y -axes.

(e) Sketch the graph of $\frac{1}{f(x)}$ by indicating any asymptotes and intersections with

x - and y -axes. [3]

(f) Sketch the graph of $f^{-1}(x)$ by indicating any asymptotes and intersections with

x- and y-axes. [3]

The graph of y = f(x) is shown below.

On a new diagram sketch the graph of $y = \frac{1}{f(x)}$. Indicate any asymptotes.

The graph of y = f(x) is shown below.

On a new diagram sketch the graph of $y = \frac{6}{f(x)}$. Indicate any asymptotes.

The graph of y = f(x) is shown below. On the same diagram, sketch the graph of $y = f(x)^2$

Α.	Exan	style questions (SHORT)	
7.	[Max	kimum mark: 8] <i>[without GDC]</i>	
	_	rmine whether the following function are even , odd or neither . Prove your claim.	
	(a)	f(x) = x - x	[2]
	(b)	f(x) = x - 3	[2]
	(c)	f(x) = x - 3	[2]
	(d)	$f(x) = 3x \left x \right + \frac{1}{x}$	[2]

Let
$$f(x) = \frac{k}{x-k}$$
, $x \neq k$, $k > 0$

(a) On the diagram below, sketch the graph of f Label clearly any points of intersection with the axes, and any asymptotes.

[3]

(b) On the diagram below, sketch the graph of $\frac{1}{f}$. Label clearly any points of intersection with the axes.

Each of the diagrams below shows the graph of a function $\,f\,$. Sketch on the given axes the graph of

(a) |f(-x)|;

(b) $\frac{1}{f(x)}$;

The graph of y = f(x) for $-2 \le x \le 8$ is shown.

On the set of axes provided, sketch the graph of $y = \frac{1}{f(x)}$, clearly showing any asymptotes and indicating the coordinates of any local maxima or minima.

The diagram shows the graph of f(x)

(a) On the same diagram, sketch the graph of $\frac{1}{f(x)}$, indicating clearly any asymptotes.

- (b) On the diagram write down the coordinates of the local maximum point, the local minimum point, the x-intercepts and the y-intercept of $\frac{1}{f(x)}$. [3]
- (c) The equation f(x) = k has exactly one solution. Write down the possible values of k. [2]

The diagram shows the graph of f(x).

(a) On the same diagram, sketch the graph of $y = \frac{8}{f(x)}$ indicating any asymptotes.

(b) Write down the domain and the range

(i) of
$$y = f(x)$$
 (ii) of $y = \frac{8}{f(x)}$

[4]

The diagram shows the graph of f(x). It has a maximum at A(1.5, 2), a vertical

asymptote at x = 4 and the y-intercept is at $(0, \frac{3}{2})$. Let $g(x) = \frac{1}{f(x)}$

- (a) Write down the coordinates of
 - (i) The *y*-intercept of y = g(x)
- (ii) The local minimum of y = g(x)
- [2]

(b) On the same diagram, sketch the graph of y = g(x).

[5]

.....

The graph of y = f(x), where $-2 \le x \le 2$ is shown below.

(a) Write down the range of the following functions

Function	Range
y = f(x)	
$y = f(x)^2$	
$y = \sqrt{f(x)}$	

_

[3]

(b) Sketch, on the axes provided below, the graph of $y^2 = f(x)$ for $-2 \le x \le 2$.

The diagram shows the graph of the functions y_1 and y_2 .

(a) On the following diagram sketch the graph of $\frac{y_1}{y_2}$. Indicate clearly where the x-intercepts and asymptotes occur.

[4]

(b) On the following diagram sketch the graph of $y_1 - y_2$. Indicate clearly where the x-intercepts occur.

[2]

Consider the graph of the function, f, defined by

$$f(x) = 3x^4 - 4x^3 - 30x^2 - 36x + 112$$
, $-2 \le x \le 4.5$

- (a) Given that f(x) = 0 has one solution at x = 4, find the other solution. [1]
- (b) Find (i) the coordinates of the minimum point (ii) the range of f. [2] A sketch of the graph of $\frac{1}{f}$ is given below.

- (c) Write down the **equations** of the two vertical asymptotes. [2]
- (d) The graph of $\frac{1}{f}$ has a maximum at P. Write down the *x*-coordinate of P. [2]

.....

.....