Number of solutions to a quadratic equation

Э

We want to discuss the number of solutions to a quadratic equation.

< 口 > < 同

E

We want to discuss the number of solutions to a quadratic equation.

Recall that a quadratic equations:

$$ax^2 + bx + c = 0$$

with $a \neq 0$, will have

- two distinct real solutions if $\Delta > 0$,
- one solution (two equal solutions) if $\Delta = 0$,
- no real solutions if $\Delta < 0$.

We want to discuss the number of solutions to a quadratic equation.

Recall that a quadratic equations:

$$ax^2 + bx + c = 0$$

with $a \neq 0$, will have

- two distinct real solutions if $\Delta > 0$,
- one solution (two equal solutions) if $\Delta = 0$,
- no real solutions if $\Delta < 0$.

We must have that $a \neq 0$, because if a = 0, then the equation is not a quadratic equation and it makes no sense to analyse Δ .

Find the number of real solutions to the following problems (you do not need to calculate those solutions):

a) $x^2 + x + 4 = 0$.

э

Find the number of real solutions to the following problems (you do not need to calculate those solutions):

a)
$$x^2 + x + 4 = 0$$
.
We have $a = 1, b = 1$ and $c = 4$, so $\Delta = 1^2 - 4 \cdot 1 \cdot 4 = -15$.

Find the number of real solutions to the following problems (you do not need to calculate those solutions):

a) $x^2 + x + 4 = 0$. We have a = 1, b = 1 and c = 4, so $\Delta = 1^2 - 4 \cdot 1 \cdot 4 = -15$. $\Delta < 0$, so there will be **no real solutions**.

Find the number of real solutions to the following problems (you do not need to calculate those solutions):

a) x² + x + 4 = 0. We have a = 1, b = 1 and c = 4, so Δ = 1² - 4 · 1 · 4 = -15. Δ < 0, so there will be **no real solutions**.
b) 2x² = 3x + 1

Find the number of real solutions to the following problems (you do not need to calculate those solutions):

a)
$$x^2 + x + 4 = 0$$
.
We have $a = 1, b = 1$ and $c = 4$, so $\Delta = 1^2 - 4 \cdot 1 \cdot 4 = -15$.
 $\Delta < 0$, so there will be **no real solutions**.

b)
$$2x^2 = 3x + 1$$

We first move all terms to one side. We get $2x^2 - 3x - 1 = 0$. We have a = 2, b = -3 and c = -1, so $\Delta = (-3)^2 - 4 \cdot 2 \cdot (-1) = 17$.

Find the number of real solutions to the following problems (you do not need to calculate those solutions):

a)
$$x^2 + x + 4 = 0$$
.
We have $a = 1, b = 1$ and $c = 4$, so $\Delta = 1^2 - 4 \cdot 1 \cdot 4 = -15$.
 $\Delta < 0$, so there will be **no real solutions**.

b)
$$2x^2 = 3x + 1$$

We first move all terms to one side. We get $2x^2 - 3x - 1 = 0$. We have a = 2, b = -3 and c = -1, so $\Delta = (-3)^2 - 4 \cdot 2 \cdot (-1) = 17$. $\Delta > 0$, so there will be **two distinct real solutions**.

Find the number of real solutions to the following problems (you do not need to calculate those solutions):

c)
$$4x^2 + 1 = 4x$$

Find the number of real solutions to the following problems (you do not need to calculate those solutions):

Again we move all terms to one side. We get $4x^2 - 4x + 1 = 0$. We have a = 4, b = -4 and c = 1, so $\Delta = (-4)^2 - 4 \cdot 4 \cdot 1 = 0$.

Find the number of real solutions to the following problems (you do not need to calculate those solutions):

Again we move all terms to one side. We get $4x^2 - 4x + 1 = 0$. We have a = 4, b = -4 and c = 1, so $\Delta = (-4)^2 - 4 \cdot 4 \cdot 1 = 0$. $\Delta = 0$, so there will be **one solution**.

Suppose now that we want to find the possible values of parameter k, for which the equation

$$x^2 + 3x - 2k = 0$$

has two distinct real solutions.

Suppose now that we want to find the possible values of parameter k, for which the equation

$$x^2 + 3x - 2k = 0$$

has two distinct real solutions.

We have a = 1, b = 3 and c = -2k, so $\Delta = 3^2 - 4 \cdot 1 \cdot (-2k) = 9 + 8k$.

Suppose now that we want to find the possible values of parameter k, for which the equation

$$x^2 + 3x - 2k = 0$$

has two distinct real solutions.

We have
$$a = 1, b = 3$$
 and $c = -2k$, so $\Delta = 3^2 - 4 \cdot 1 \cdot (-2k) = 9 + 8k$.

Because we want two distinct real solutions we must have $\Delta>0,$ so we solve:

$$9 + 8k > 0$$

And we get that $k > -\frac{9}{8}$. So for all values of k greater than $-\frac{9}{8}$, the above equation will have two distinct real solutions.

4/9

Find the possible values of m for which the equation:

$$2x^2 - mx + 6 = 0$$

has exactly one real solution.

Find the possible values of m for which the equation:

$$2x^2 - mx + 6 = 0$$

has exactly one real solution.

We have a = 2, b = -m and c = 6, so $\Delta = (-m)^2 - 4 \cdot 2 \cdot 6 = m^2 - 48$.

Find the possible values of m for which the equation:

$$2x^2 - mx + 6 = 0$$

has exactly one real solution.

We have
$$a = 2, b = -m$$
 and $c = 6$, so $\Delta = (-m)^2 - 4 \cdot 2 \cdot 6 = m^2 - 48$.

This time we want exactly one real solutions, so we must have $\Delta = 0$, so we solve:

$$m^2 - 48 = 0$$

We get that $m = \pm \sqrt{48} = \pm 4\sqrt{3}$.

Find the possible values of m for which the equation:

$$mx - 4 = x^2$$

has two distinct real solutions.

Э

Find the possible values of m for which the equation:

$$mx - 4 = x^2$$

has two distinct real solutions.

We move all terms to one side and get:

$$x^2 - mx + 4 = 0$$

We have a = 1, b = -m and c = 4, so $\Delta = (-m)^2 - 4 \cdot 1 \cdot 4 = m^2 - 16$.

Find the possible values of m for which the equation:

$$mx - 4 = x^2$$

has two distinct real solutions.

We move all terms to one side and get:

$$x^2 - mx + 4 = 0$$

We have a = 1, b = -m and c = 4, so $\Delta = (-m)^2 - 4 \cdot 1 \cdot 4 = m^2 - 16$. We want two distinct real solutions, so we must have $\Delta > 0$, so we solve:

$$m^2 - 16 > 0$$

Find the possible values of m for which the equation:

$$mx - 4 = x^2$$

has two distinct real solutions.

We move all terms to one side and get:

$$x^2 - mx + 4 = 0$$

We have a = 1, b = -m and c = 4, so $\Delta = (-m)^2 - 4 \cdot 1 \cdot 4 = m^2 - 16$. We want two distinct real solutions, so we must have $\Delta > 0$, so we solve:

$$m^2 - 16 > 0$$

We can factorize the left hand side:

$$(m+4)(m-4) > 0$$

Find the possible values of m for which the equation:

$$mx - 4 = x^2$$

has two distinct real solutions.

We move all terms to one side and get:

$$x^2 - mx + 4 = 0$$

We have a = 1, b = -m and c = 4, so $\Delta = (-m)^2 - 4 \cdot 1 \cdot 4 = m^2 - 16$. We want two distinct real solutions, so we must have $\Delta > 0$, so we solve:

$$m^2 - 16 > 0$$

We can factorize the left hand side:

$$(m+4)(m-4) > 0$$

Now we can do the sign diagram and we can see that it is greater than 0 for m < -4 or m > 4.

Find the possible values of p for which the equation:

$$\frac{1}{2}x^2 + (p-4)x + p = 0$$

has no real solutions.

Э

Find the possible values of p for which the equation:

$$\frac{1}{2}x^2 + (p-4)x + p = 0$$

has no real solutions.

We have
$$a = \frac{1}{2}$$
, $b = p - 4$ and $c = p$, so
 $\Delta = (p - 4)^2 - 4 \cdot \frac{1}{2} \cdot p = p^2 - 10p + 16$.

Э

Find the possible values of p for which the equation:

$$\frac{1}{2}x^2 + (p-4)x + p = 0$$

has no real solutions.

We have $a = \frac{1}{2}, b = p - 4$ and c = p, so $\Delta = (p - 4)^2 - 4 \cdot \frac{1}{2} \cdot p = p^2 - 10p + 16.$

We want no real solutions, so we must have $\Delta < 0$, so we solve:

$$p^2 - 10p + 16 < 0$$

Find the possible values of p for which the equation:

$$\frac{1}{2}x^2 + (p-4)x + p = 0$$

has no real solutions.

We have
$$a = \frac{1}{2}, b = p - 4$$
 and $c = p$, so
 $\Delta = (p - 4)^2 - 4 \cdot \frac{1}{2} \cdot p = p^2 - 10p + 16.$

We want no real solutions, so we must have $\Delta < 0$, so we solve:

$$p^2 - 10p + 16 < 0$$

We can factorize the left hand side:

$$(p-2)(p-8) < 0$$

Find the possible values of p for which the equation:

$$\frac{1}{2}x^2 + (p-4)x + p = 0$$

has no real solutions.

We have
$$a = \frac{1}{2}, b = p - 4$$
 and $c = p$, so
 $\Delta = (p - 4)^2 - 4 \cdot \frac{1}{2} \cdot p = p^2 - 10p + 16.$

We want no real solutions, so we must have $\Delta < 0$, so we solve:

$$p^2 - 10p + 16 < 0$$

We can factorize the left hand side:

$$(p-2)(p-8) < 0$$

Now the sign diagram and we can see that it is smaller than 0 for 2 .

Tomasz Lechowski

7/9

Find the possible values of q for which the equation:

$$x^{2} - 4(q+1)x + q(2q-1) = 0$$

has two distinct real solutions.

Э

Find the possible values of q for which the equation:

$$x^2 - 4(q+1)x + q(2q-1) = 0$$

has two distinct real solutions.

We have a = 1, b = -4(q+1) and c = q(2q-1).

$$\Delta = (-4(q+1))^2 - 4 \cdot 1 \cdot q(2q-1) = 16(q^2 + 2q + 1) - 8q^2 + 4q = 8q^2 + 36q + 16$$

Find the possible values of q for which the equation:

$$x^2 - 4(q+1)x + q(2q-1) = 0$$

has two distinct real solutions.

We have a = 1, b = -4(q + 1) and c = q(2q - 1).

$$\Delta = (-4(q+1))^2 - 4 \cdot 1 \cdot q(2q-1) = 16(q^2 + 2q + 1) - 8q^2 + 4q = 8q^2 + 36q + 16$$

We want two distinct real solutions, so we must have $\Delta > 0$, so we solve:

$$8q^2 + 36q + 16 > 0$$

Find the possible values of q for which the equation:

$$x^2 - 4(q+1)x + q(2q-1) = 0$$

has two distinct real solutions.

We have a = 1, b = -4(q + 1) and c = q(2q - 1).

$$\Delta = (-4(q+1))^2 - 4 \cdot 1 \cdot q(2q-1) = 16(q^2 + 2q + 1) - 8q^2 + 4q = 8q^2 + 36q + 16$$

We want two distinct real solutions, so we must have $\Delta > 0$, so we solve:

$$8q^2 + 36q + 16 > 0$$

We first divide both sides by 4 and then factorize to get:

$$(2q+1)(q+4) > 0$$

Find the possible values of q for which the equation:

$$x^2 - 4(q+1)x + q(2q-1) = 0$$

has two distinct real solutions.

We have a = 1, b = -4(q + 1) and c = q(2q - 1).

$$\Delta = (-4(q+1))^2 - 4 \cdot 1 \cdot q(2q-1) = 16(q^2 + 2q + 1) - 8q^2 + 4q = 8q^2 + 36q + 16$$

We want two distinct real solutions, so we must have $\Delta > 0$, so we solve:

$$8q^2 + 36q + 16 > 0$$

We first divide both sides by 4 and then factorize to get:

$$(2q+1)(q+4) > 0$$

Time to do the sign diagram and we get that we have two solutions to the original equation for q < -4 or $q > -\frac{1}{2}$.

If you have any questions you can contact via MS Teams or Librus.

臣

590