Kinematics 1 [88 marks]

1. [Maximum mark: 8]

23N.1.AHL.TZ0.13

The velocity v of a particle at time t, as it moves along a straight line, can be modelled by the piecewise function

$$v(t) = egin{cases} u_1(t), & 0 \leq t \leq T \ u_2(t), & t \geq T \end{cases}$$

where $u_1(t)=2t^2-t^3$ and $u_2(t)=8-4t$. It is required that $u_1(T)=u_2(T).$

- (a) Find the value of T. [2]
- (b) Show that $u_1'(T) = u_2'(T)$. [2]

The displacement of the particle at time t = 0 is zero.

- (c) Find the time when the particle returns to its initial position. [4]
- 2. [Maximum mark: 9] 22N.1.AHL.TZ0.14 A particle moves such that its velocity, v metres per second, at time t seconds, is given by $v = t \sin(t^2)$.
 - (a)Find an expression for the acceleration of the particle.[2](b)Hence, or otherwise, find its greatest acceleration for
 $0 \le t \le 8$.[2]

The particle starts at the origin.

(c) Find an expression for the displacement of the particle. [3]

(d)	Hence show that the particle never has a negative	
	displacement.	[2]

3. [Maximum mark: 15] 21M.2.AHL.TZ2.6 A particle ${
m P}$ moves along the x-axis. The velocity of ${
m P}$ is $v\,{
m m}\,{
m s}^{-1}$ at time t seconds, where $v=-2t^2+16t-24$ for $t\geq 0$.

(a)	Find the times when ${ m P}$ is at instantaneous rest.	[2]
(b)	Find the magnitude of the particle's acceleration at 6 seconds.	[4]
(c)	Find the greatest speed of $\mathrm P$ in the interval $0\leq t\leq 6.$	[2]
(d)	The particle starts from the origin ${ m O}.$ Find an expression for the displacement of ${ m P}$ from ${ m O}$ at time t seconds.	[4]
(e)	Find the total distance travelled by ${ m P}$ in the interval $0\leq t\leq 4.$	[3]

4. [Maximum mark: 7] $19M.1.SL.TZ1.S_7$ A particle P starts from point O and moves along a straight line. The graph of its
velocity, $v ms^{-1}$ after t seconds, for $0 \le t \le 6$, is shown in the following diagram.

The graph of v has t-intercepts when t = 0, 2 and 4.

The function $s\left(t
ight)$ represents the displacement of P from O after t seconds.

It is known that P travels a distance of 15 metres in the first 2 seconds. It is also

known) that $s\left(2 ight)=s\left(5 ight)$ and $\int_{2}^{4}v\mathrm{d}t=9$.	
(a)	Find the value of $s\left(4 ight)-\overline{s}\left(2 ight)$.	[2]

- (b) Find the total distance travelled in the first 5 seconds. [5]
- 5. [Maximum mark: 16] 19M.2.SL.TZ2.S_8
 In this question distance is in centimetres and time is in seconds.

Particle A is moving along a straight line such that its displacement from a point P, after t seconds, is given by $s_{\mathrm{A}} = 15 - t - 6t^3 \mathrm{e}^{-0.8t}$, $\mathsf{0} \le t \le$ 25. This is shown in the following diagram.

(a)	Find the initial displacement of particle A from point P.	[2]
(b)	Find the value of t when particle A first reaches point P.	[2]
(c)	Find the value of t when particle A first changes direction.	[2]
(d)	Find the total distance travelled by particle A in the first 3 seconds.	[3]
Another particle, B, moves along the same line, starting at the same time as particle A. The velocity of particle B is given by $v_{ m B}=8-2t$, 0 \leq t \leq 25.		
(e.i)	Given that particles A and B start at the same point, find the displacement function $s_{ m B}$ for particle B.	[5]
(e.ii)	Find the other value of t when particles A and B meet.	[2]

(e.ii) Find the other value of t when particles A and B meet.

A particle moves along a horizontal line such that at time t seconds, t \geq	
0, its acceleration a is given by a = 2 t – 1. When t = 6 , its displacement	
s from a fixed origin O is 18.25 m. When t = 15, its displacement from O	
is 922.75 m. Find an expression for s in terms of $t.$	[6]

7. [Maximum mark: 7] 18N.2.SL.TZ0.S_4 A particle moves along a straight line so that its velocity, v m s⁻¹, after t seconds is given by $v(t) = 1.4^t - 2.7$, for $0 \le t \le 5$.

(a)	Find when the particle is at rest.	[2]
(b)	Find the acceleration of the particle when $t=2.$	[2]
(c)	Find the total distance travelled by the particle.	[3]

8. [Maximum mark: 15] 18M.2.SL.TZ2.S_9 A particle P moves along a straight line. The velocity $v \text{ m s}^{-1}$ of P after t seconds is given by $v(t) = 7 \cos t - 5t \cos t$, for $0 \le t \le 7$.

The following diagram shows the graph of v.

(b.ii) Find the value of the acceleration of P at time t_1 . [1]

© International Baccalaureate Organization, 2024