INTERNATIONAL BACCALAUREATE

Mathematics: applications and interpretation

MAI

EXERCISES [MAI 2.2] QUADRATICS

Compiled by Christos Nikolaidis

A. Paper 1 questions (SHORT)

1. [Maximum mark: 30]

Complete the following table for the three quadratic functions below

	$y = 2x^2 - 12x + 10$	$y = 2x^2 - 12x + 18$	$y = 2x^2 - 12x + 23$
y-intercept			
Roots			
Factorisation (if possible)			
axis of symmetry			
Vertex			
Vertex form $f(x) = a(x - h)^2 + k$			
Solve $f(x) \ge 0$			
Solve $f(x) > 0$			
Solve $f(x) \le 0$			
Solve $f(x) < 0$			

2. [Maximum mark: 12]

Consider the quadratic $y = 4x^2 - 120x + 800$

- (a) (i) Find the roots.
 - (ii) **Hence** express the quadratic in the form $y = a(x x_1)(x x_2)$ [3]
- (b) (i) Find the coordinates of the vertex.
 - (ii) **Hence** express the quadratic in the form $y = a(x-h)^2 + k$
 - (iii) Write down the equation of the axis of symmetry
 - (iv) Write down the minimum value of *y*
- (c) Write down the y- intercept of the quadratic [1]

[5]

(d) Draw the graph of the quadratic on the diagram below. [3]

3. [Maximum mark: 14]

Consider the quadratic $y = -4x^2 + 120x - 800$

- (a) (i) Find the roots.
 - (ii) **Hence** express the quadratic in the form $y = a(x x_1)(x x_2)$ [3]
- (b) (i) Find the coordinates of the vertex.
 - (ii) **Hence** express the quadratic in the form $y = a(x-h)^2 + k$
 - (iii) Write down the equation of the axis of symmetry
 - (iv) Write down the maximum value of y
- (c) Write down the y intercept of the quadratic
- (d) Draw the graph of the quadratic on each of the diagrams below.

.....

.....

.....

[5]

[1]

[5]

4. [Maximum mark: 5]

The parabola of a quadratic is shown below. The x-intercepts are x=2 and x=6.

The y-intercept is y = 12. The curve passes through the point A(7,5).

Without finding the equation of the curve and by just using the symmetry of the graph

- (a) Write down the equation of the axis of symmetry. [1]
- (b) Find the value of y for x = 8. Justify your answer. [2]
- (c) Find the value of y for x = 1. Justify your answer. [2]

5. [Maximum mark: 4]

- (a) Solve the equation $x^2 3x 10 = 0$. [2]
- (b) Factorize $x^2 3x 10$. [2]

.....

6. [Maximum mark: 4]

The diagram represents the graph of the function $f: x \mapsto (x-p)(x-q)$.

(a) Write down the values of p and q.

[2] [2]

(b) The function has a minimum value at the point C. Find the x-coordinate of C.

7. [Maximum mark: 2]

The following diagram shows part of the graph of f, where $f(x) = x^2 - x - 2$.

(a) Find both *x*-intercepts.

[2]

(b) Find the *x*-coordinate of the vertex.

[2]

.....

8. [Maximum mark: 4]

The diagram shows the parabola y = (7 - x)(1 + x). The points A, C are the x-intercepts and the point B is the maximum point. Find the coordinates of A, B and C.

9. [Maximum mark: 7]

Let $f(x) = 8x - 2x^2$. Part of the graph of f is shown below.

- (a) Find the *x*-intercepts of the graph.
- (b)

(i) Write down the equation of the axis of symmetry.	
(ii) Find the <i>y</i> -coordinate of the vertex.	[3]

[4]

10. [Maximum mark: 5]

The following diagram shows the graph of function $y = ax^2 + bx + c$.

Complete the table next to the graph to show whether each expression is positive (+), negative (-) or zero (0).

Expression	+ - 0
а	
С	
b^2-4ac	
$-\frac{b}{2a}$	
b	

11. [Maximum mark: 5]

The following diagram shows the graph of function $y = ax^2 + bx + c$.

Complete the table next to the graph to show whether each expression is positive (+), negative (-) or zero (0).

Expression	+ - 0
а	
С	
b^2-4ac	
$-\frac{b}{2a}$	
b	

12. [Maximum mark: 5]

The following diagram shows the graph of function $y = ax^2 + bx + c$.

Complete the table next to the graph to show whether each expression is positive (+), negative (-) or zero (0).

Expression	+ - 0
а	
С	
b^2-4ac	
_ <u>b</u>	
2 <i>a</i>	
b	

13.	[Max	kimum mark: 4]				
	(a)	Find the vertex of $f(x) = x^2 - 6x + 14$	[2]			
	(b)	Express the function in the form $f(x) = (x - h)^2 + k$	[2]			
14.	[Max	kimum mark: 4]				
	Con	sider the function $f(x) = 2x^2 - 8x + 5$.				
	(a)	Express $f(x)$ in the form $a(x-p)^2+q$, where $a, p, q \in \mathbb{Z}$.	[3]			
	(b)	Find the minimum value of $f(x)$.	[1]			
15.	[Max	kimum mark: 4]				
	(a)	Find the vertex of $f(x) = 2x^2 + 2x + 2$	[2]			
	(b)	Express the function in the form $f(x) = a(x - h)^2 + k$	[2]			
16.	[Max	[Maximum mark: 4]				
	(a)	Find the vertex of $f(x) = -x^2 - x - 1$	[2]			
	(b)	Express the function in the form $f(x) = a(x-h)^2 + k$	[2]			

[MAI 2.1] QUADRATICS

17.	[Maximum mark: 5]
	Find the points of intersection between $y = x^2 - 5x + 3$ and $y = 3x - 9$
	and sketch a graph to demonstrate the result.
18.	[Maximum mark: 5]
	Find the point of intersection between $y = x^2 - 5x + 3$ and $y = 3x - 13$
	and sketch a graph to demonstrate the result.

19.	[Maximum mark: 5]
	Find the points of intersection (if any) between $y = x^2 - 5x + 3$ and $y = 3x - 15$
	and sketch a graph to demonstrate the result.
20.	[Maximum mark: 5]
	Find the points of intersection (if any) between $y = x^2 - 3$ and $y = 5 - x^2$
	and sketch a graph to demonstrate the result.