Revision questions [170 marks]

1. [Maximum mark: 6]

23M.1.AHL.TZ1.7

Consider
$$P(z)=4m-mz+rac{36}{m}z^2-z^3$$
 , where $z\in\mathbb{C}$ and $m\in\mathbb{R}^+$.

Given that $z-3{
m i}$ is a factor of P(z), find the roots of P(z)=0. [6]

Markscheme

METHOD 1

3i (is a root) A1

(other complex root is) -3i

Note: Award *A1A1* for $P(3\mathrm{i})$ and $P(-3\mathrm{i})=0$ seen in their working.

Award A1 for each correct root seen in sum or product of their roots.

EITHER

attempt to find
$$P(3\mathrm{i})=0$$
 or $P(-3\mathrm{i})=0$ (M1)

$$4m - 3m\mathbf{i} + \frac{36}{m}(3\mathbf{i})^2 - (3\mathbf{i})^3 = 0$$

$$4m - 3mi - \frac{36}{m}(-9) + 27i = 0$$

attempt to equate the real or imaginary parts (M1)

$$27-3m=0$$
 or $9 imes rac{36}{m}=4m$

OR

attempt to equate sum of three roots to $\frac{36}{m}$ (M1)

Note: Accept sum of three roots set to $-\frac{36}{m}$.

Award **M0** for stating sum of roots is $\pm \frac{36}{m}$.

$$3i - 3i + r = \frac{36}{m} \left(\Rightarrow r = \frac{36}{m} \right)$$

substitute their r into product of roots (M1)

$$(3\mathrm{i})(-3\mathrm{i})(\frac{36}{m})=4m\,\mathrm{OR}\,(z^2+9)(\frac{36}{m}-z)$$

$$9 imesrac{36}{m}=4m$$
 or $rac{4m}{9}=rac{36}{m}$

OR

attempt to equate product of three roots to 4m (M1)

Note: Accept product of three roots set to -4m.

Award $\emph{M0}$ for stating product of roots is $\pm 4m$.

$$\left(3\mathrm{i}\right)\left(-3\mathrm{i}\right) imes r=4m\left(\Rightarrow r=rac{4m}{9}
ight)$$

substitute their r into sum of roots (M1)

$$3\mathrm{i}-3\mathrm{i}+rac{4m}{9}=rac{36}{m}$$
 or $\left(z^2+9
ight)\left(rac{4m}{9}-z
ight)$

$$\frac{4m}{9} = \frac{36}{m}$$

THEN

$$m=9$$
 (A1)

third root is 4

METHOD 2

3i (is a root) A1

(other complex root is) -3i

recognition that the other factor is $(z+3\mathrm{i})$ and attempt to write P(z) as product of three linear factors or as product of a quadratic and a linear factor $\it (M1)$

$$P(z)=(z-3\mathrm{i})(z+3\mathrm{i})(r-z)$$
 OR $\left(z-3\mathrm{i}
ight)\left(z+3\mathrm{i}
ight)=z^2+9\Rightarrow P(z)=\left(z^2+9
ight)\left(rac{4m}{9}-z
ight)$

Note: Accept any attempt at long division of P(z) by z^2+9 .

Award **M0** for stating other factor is $(z+3{\bf i})$ or obtaining z^2+9 with no further working.

Attempt to compare their coefficients (M1)

$$-9=-m\,\mathrm{or}\,rac{4m}{9}=rac{36}{m}$$

$$m=9$$
 (A1)

third root is 4 A1

Note: Award a maximum of *A0A0(M1)(M1)(A1)A1* for a final answer $P(z)=(z-3\mathrm{i})(z+3\mathrm{i})(4-z)$ seen or stating all three correct factors with no evidence of roots throughout their working.

[6 marks]

2. [Maximum mark: 7]

22N.1.AHL.TZ0.5

Consider the equation $z^4+pz^3+54z^2-108z+80=0$ where $z\in\mathbb{C}$ and $p\in\mathbb{R}.$

Three of the roots of the equation are $3+\mathrm{i},\ \alpha$ and α^2 , where $\alpha\in\mathbb{R}.$

(a) By considering the product of all the roots of the equation, find the value of α .

[4]

Markscheme

product of roots
$$=80$$

(A1)

$$3-i$$
 is a root

(A1)

attempt to set up an equation involving the product of their four roots and ± 80 (M1)

$$(3+i)(3-i)\alpha^3 = 80 \Rightarrow 10\alpha^3 = 80$$

$$lpha=2$$

11

[4 marks]

(b) Find the value of p.

[3]

Markscheme

METHOD 1

sum of roots
$$=-p$$
 (A1)
$$-p=3+\mathrm{i}+3-\mathrm{i}+2+4$$
 (M1)

Note: Accept $p=3+\mathrm{i}+3-\mathrm{i}+2+4$ for (M1)

$$p=-12$$

METHOD 2

$$(z-(3+i))(z-(3-i))(z-2)(z-4)$$
 (M1)

$$((z-3)-i)((z-3)+i)(z-2)(z-4)$$
 (A1)

$$(z^2-6z+10)(z^2-6z+8)=z^4-12z^3+\dots$$

$$p=-12$$

[3 marks]

[Maximum mark: 16] 22N.1.AHL.TZ0.11 Consider a three-digit code abc, where each of a,b and c is assigned one of the values 1,2,3,4 or 5.

Find the total number of possible codes

(a.i) assuming that each value can be repeated (for example, $121\,\mathrm{or}$ 444).

[2]

Markscheme

$$5^3$$
 (A1) = 125 A1

[2 marks]

(a.ii) assuming that no value is repeated.

[2]

Markscheme

$$^5P_3=5 imes4 imes3$$
 (A1) $=60$ A1

[2 marks]

Let $P(x)=x^3+ax^2+bx+c$, where each of a , b and c is assigned one of the values 1,2,3,4 or 5 . Assume that no value is repeated.

Consider the case where P(x) has a factor of $\left(x^2+3x+2\right)$.

(b.i) Find an expression for b in terms of a.

[6]

Markscheme

METHOD 1

$$x^2 + 3x + 2 = (x+1)(x+2)$$
 (A1)

correct use of factor theorem for at least one of their factors (M1)

$$P(-1) = 0$$
 or $P(-2) = 0$

attempt to find two equations in $a,\ b$ and c

$$(-1)^3 + a(-1)^2 + b(-1) + c = 0 (\Rightarrow -1 + a - b + c = 0)$$

$$(-2)^3 + a(-2)^2 + b(-2) + c = 0$$

$$-8 + 4a - 2b + c = 0$$
 and $-1 + a - b + c = 0$

attempt to combine their two equations in -8+4a-2b+c=0 to eliminate c $\ensuremath{\textit{(M1)}}$

$$b = 3a - 7$$

Note: Award at most A1M1M1A0M1A0 for b=-3a-7 from P(1)=P(2)=0

METHOD 2

$$P(x) = x^3 + ax^2 + bx + c = (x^2 + 3x + 2)(x + d)$$
 (M1)

$$= x^3 + (3+d)x^2 + (2+3d)x + 2d$$
 (A1)

attempt to compare coefficients of x^2 and x

$$a=3+d$$
 and $b=2+3d$

attempt to eliminate d (M1)

$$\Rightarrow b = 3a - 7$$
 A1

METHOD 3

attempt to divide x^3+ax^2+bx+c by x^2+3x+2

$$\frac{x^3 + ax^2 + bx + c}{x^2 + 3x + 2} = (x + a - 3) + \frac{(-3a + b + 7)x + (c - 2a + 6)}{x^2 + 3x + 2}$$

Note: Award A1 for x+a-3 , A1 for (-3a+b+7)x and A1 for c-2a+6

recognition that, if $\left(x^2+3x+2\right)$ is a factor of P(x) , then -3a+b+7=0

leading to b=3a-7

METHOD 4

$$x^2 + 3x + 2 = (x+1)(x+2)$$
 (A1)

attempt to use Vieta's formulae for a cubic with roots $-1, \ -2$ and "p" (M1)

$$(-1)+(-2)+p=-a (\Rightarrow p=3-a)$$
 A1
$$(-1)(-2)+(-1)p+(-2)p=b$$
 A1

Attempt to eliminate "p" (M1)

$$2 - (3 - a) - 2(3 - a) = b$$

 $b = 3a - 7$

Note: Award at most <code>A1M1A0A0M1A0</code> for b=-3a-7 from roots $1,\ 2$ and "p"

[6 marks]

(b.ii) Hence show that the only way to assign the values is $a=4,\ b=5$ and c=2.

[2]

Markscheme

METHOD 1

a=1,2,5 lead to invalid values for b

a=3 , $b=2\Rightarrow c=0$ so not possible

so $a=4,\,b=5,\,c=2$ is the only solution ${\it AG}$

METHOD 2

c=2a-6

correctly argues a=4 is the only possibility $\it R1$

so $a=4,\,b=5,\,c=2$ is the only solution ${\it AG}$

[2 marks]

(b.iii) Express P(x) as a product of linear factors.

[1]

Markscheme

$$x^3 + 4x^2 + 5x + 2 = \left(x^2 + 3x + 2\right)(x+1)$$
 = $(x+2)(x+1)(x+1)$

[1 mark]

(b.iv) Hence or otherwise, sketch the graph of y=P(x), clearly showing the coordinates of any intercepts with the axes.

[3]

Markscheme

positive cubic shape with y-intercept at (0,2)

x -intercept at (-2,0) and local maximum point anywhere between x=-2 and x=-1

local minimum point at (-1,0)

Note: Accept answers from an approach based on calculus.

[3 marks]

4. [Maximum mark: 5]

The cubic equation $x^3-kx^2+3k=0$ where k>0 has roots $lpha,\ eta$ and lpha+eta.

Given that $lpha eta = -rac{k^2}{4}$, find the value of k. [5]

Markscheme

$$\alpha + \beta + \alpha + \beta = k$$
 (A1)

$$\alpha + \beta = \frac{k}{2}$$

$$lphaeta(lpha+eta)=-3k$$
 (A1)

$$\left(-rac{k^2}{4}
ight)\left(rac{k}{2}
ight)=-3k\,\left(-rac{k^3}{8}=-3k
ight)$$
 Mi

attempting to solve $-\frac{k^3}{8}+3k=0$ (or equivalent) for k

$$k=2\sqrt{6}\ \Bigl(=\sqrt{24}\Bigr)(k>0)$$
 A1

Note: Award **A0** for $k=\pm 2\sqrt{6} \ \Big(\pm \sqrt{24}\Big)$.

[5 marks]

The equation has three distinct real roots which can be written as $\log_2 a$, $\log_2 b$ and $\log_2 c$.

The equation also has two imaginary roots, one of which is $d\mathbf{i}$ where $d\in\mathbb{R}$.

(a) Show that abc = 8.

[5]

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

recognition of the other root $=-d{
m i}$ (A1)

$$\log_2 a + \log_2 b + \log_2 c + d\mathrm{i} - d\mathrm{i} = 3$$
 miai

Note: Award *M1* for sum of the roots, *A1* for 3. Award *A0M1A0* for just $\log_2 a + \log_2 b + \log_2 c = 3$.

$$\log_2 abc = 3$$
 (M1)

$$\Rightarrow abc = 2^3$$
 A1

$$abc=8$$
 AG

[5 marks]

The values a, b, and c are consecutive terms in a geometric sequence.

(b) Show that one of the real roots is equal to 1.

[3]

Markscheme

METHOD 1

let the geometric series be u_1,u_1r,u_1r^2

$$\left(u_1r\right)^3=8$$
 M1

$$u_1r=2$$
 A1

hence one of the roots is $\log_2\!2=1$ $\,\,$ R1 $\,\,$

METHOD 2

$$\frac{b}{a} = \frac{c}{b}$$

$$b^2 = ac \Rightarrow b^3 = abc = 8$$
 M1

$$b=2$$
 A1

hence one of the roots is $log_2 2 = 1$ $\,\,$ R1 $\,\,$

[3 marks]

(c) Given that $q=8d^2$, find the other two real roots.

[9]

Markscheme

METHOD 1

product of the roots is $r_1 imes r_2 imes 1 imes d{
m i} imes - d{
m i} = -8d^2$ (M1)(A1)

$$r_1 imes r_2 = -8$$
 A1

sum of the roots is $r_1+r_2+1+d\mathrm{i}+-d\mathrm{i}=3$ (M1)(A1)

$$r_1+r_2=2$$
 A1

solving simultaneously (M1)

$$r_1=-2, r_2=4$$
 A1A1

METHOD 2

product of the roots $\log_2 a imes \log_2 b imes \log_2 c imes d{f i} imes -d{f i} = -8d^2$ M1A1

 $\log_2 a imes \log_2 b imes \log_2 c = -8$ A1

EITHER

a,b,c can be written as $\frac{2}{r}$, 2, 2r $ag{M1}$

$$(\log_2 \frac{2}{r}) (\log_2 2) (\log_2 2r) = -8$$

attempt to solve M1

$$(1 - \log_2 r) (1 + \log_2 r) = -8$$

$$\log_2 r = \pm 3$$

$$r=rac{1}{8},\,8$$
 A1A1

OR

a,b,c can be written as $a,2,\frac{4}{a}$ M1

$$(\log_2 a)(\log_2 2)(\log_2 \frac{4}{a}) = -8$$

attempt to solve M1

$$a = \frac{1}{4}, \, 16$$
 A1A1

THEN

a and c are $\frac{1}{4}$, 16 (A1)

roots are -2, 4 **A1**

[9 marks]

Consider the equation $z^4+az^3+bz^2+cz+d=0$, where a, b, c, $d\in\mathbb{R}$ and $z\in\mathbb{C}$.

Two of the roots of the equation are $\log_2 6$ and $i\sqrt{3}$ and the sum of all the roots is $3+\log_2 3$.

Show that 6a + d + 12 = 0.

[7]

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

$$-i\sqrt{3}$$
 is a root (A1)

$$3 + \log_2 3 - \log_2 6 \left(= 3 + \log_2 rac{1}{2} = 3 - 1 = 2
ight)$$
 is a root (A1)

sum of roots:
$$-a=3+\log_2 3 \Rightarrow a=-3-\log_2 3$$
 $\,$ M1 $\,$

Note: Award M1 for use of -a is equal to the sum of the roots, do not award if minus is missing.

Note: If expanding the factored form of the equation, award $\it M1$ for equating $\it a$ to the coefficient of $\it z^3$.

product of roots:
$$(-1)^4d=2\left(\log_26\right)\left(i\sqrt{3}\right)\left(-i\sqrt{3}\right)$$
 M1
$$=6\log_26$$
 A1

Note: Award M1A0 for $d=-6\log_2\!6$

$$6a + d + 12 = -18 - 6\log_2 3 + 6\log_2 6 + 12$$

EITHER

$$=-6+6\log_2 2=0$$
 M1A1AG

Note: *M1* is for a correct use of one of the log laws.

OR

$$= -6 - 6\log_2 3 + 6\log_2 3 + 6\log_2 2 = 0$$
 M1A1AG

Note: *M1* is for a correct use of one of the log laws.

[7 marks]

7. [Maximum mark: 5]

18M.1.AHL.TZ1.H_1

Let $f(x) = x^4 + px^3 + qx + 5$ where p, q are constants.

The remainder when f(x) is divided by (x + 1) is 7, and the remainder when f(x) is divided by (x - 2) is 1. Find the value of p and the value of q.

[5]

Markscheme

*This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

attempt to substitute x = -1 or x = 2 or to divide polynomials (M1)

$$1 - p - q + 5 = 7$$
, $16 + 8p + 2q + 5 = 1$ or equivalent **A1A1**

attempt to solve their two equations $\emph{M1}$

$$p = -3, q = 2$$
 A1

[5 marks]

8. [Maximum mark: 5]

18M.2.AHL.TZ2.H 2

The polynomial $x^4+px^3+qx^2+rx+6$ is exactly divisible by each of (x-1), (x-2) and (x-3).

Find the values of p, q and r.

[5]

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

substitute each of x = 1.2 and 3 into the quartic and equate to zero (M1)

$$p + q + r = -7$$

$$4p+2q+r=-11$$
 or equivalent (A2)

$$9p + 3q + r = -29$$

Note: Award A2 for all three equations correct, A1 for two correct.

attempting to solve the system of equations (M1)

$$p = -7, q = 17, r = -17$$
 A1

Note: Only award *M1* when some numerical values are found when solving algebraically or using GDC.

METHOD 2

attempt to find fourth factor (M1)

$$(x-1)$$
 A1

attempt to expand $\left(x-1\right)^2\left(x-2\right)\left(x-3\right)$ M1

$$x^4 - 7x^3 + 17x^2 - 17x + 6$$
 ($p = -7$, $q = 17$, $r = -17$) A2

Note: Award A2 for all three values correct, A1 for two correct.

Note: Accept long / synthetic division.

[5 marks]

9. [Maximum mark: 5]

SPM.1.AHL.TZ0.4

The following diagram shows the graph of y=f(x). The graph has a horizontal asymptote at y=-1. The graph crosses the x-axis at x=-1 and x=1, and the y-axis at y=2.

On the following set of axes, sketch the graph of $y=\left[f\left(x\right)\right]^2+1$, clearly showing any asymptotes with their equations and the coordinates of any local maxima or minima.

Markscheme

no y values below 1 A1

horizontal asymptote at y=2 with curve approaching from below as $x \to \pm \infty$. A1

- $(\pm 1,1)$ local minima A1
- (0,5) local maximum A1

smooth curve and smooth stationary points A1

[5 marks]

10. [Maximum mark: 5]

SPM.2.AHL.TZ0.9

Consider the graphs of $y=rac{x^2}{x-3}$ and y=m (x+3) , $m\in\mathbb{R}$.

Markscheme

METHOD 1

sketching the graph of $y=rac{x^2}{x-3}$ ($y=x+3+rac{9}{x-3}$) $\,$ M1 $\,$

the (oblique) asymptote has a gradient equal to 1

and so the maximum value of m is 1 R1

consideration of a straight line steeper than the horizontal line joining (-3, 0) and (0, 0) **M1**

so m > 0 R1

hence $0 < m \le 1$ A1

METHOD 2

attempting to eliminate y to form a quadratic equation in x

$$x^2 = m\left(x^2 - 9\right)$$

$$\Rightarrow (m-1)x^2-9m=0$$
 A1

EITHER

attempting to solve $-4\left(m-1\right)\left(-9m\right)<0$ for m

OR

attempting to solve x^2 < 0 ie $rac{9m}{m-1} < 0 \,\,(m
eq 1)$ for m

THEN

$$\Rightarrow 0 < m < 1$$
 A1

a valid reason to explain why m=1 gives no solutions \emph{eg} if m=1,

$$(m-1)x^2-9m=0 \Rightarrow -9=0$$
 and so 0 < m \leq 1 $\,$ R1 $\,$

[5 marks]

11. [Maximum mark: 9]

EXM.1.AHL.TZ0.5

Let
$$f\left(x
ight)=rac{2x^{2}-5x-12}{x+2},\,x\in\mathbb{R},\,x
eq-2.$$

(a) Find all the intercepts of the graph of $f\left(x\right)$ with both the x and y axes.

[4]

Markscheme

$$x=0\Rightarrow y=-6$$
 intercept on the y axes is (0, –6) $\,$ **A1**

$$2x^2 - 5x - 12 = 0 \Rightarrow (2x + 3)(x - 4) = 0 \Rightarrow x = \frac{-3}{2} \text{ or } 4$$

intercepts on the x axes are $\left(\frac{-3}{2},\ 0\right)$ and $(4,\ 0)$

[4 marks]

(b) Write down the equation of the vertical asymptote.

[1]

Markscheme

$$x=-2$$
 A1

[1 mark]

(c) As $x \to \pm \infty$ the graph of f(x) approaches an oblique straight line asymptote.

Divide $2x^2-5x-12$ by x+2 to find the equation of this asymptote.

[4]

Markscheme

$$f(x)=2x-9+rac{6}{x+2}$$
 MIAT

So equation of asymptote is y=2x-9 \qquad M1A1

[4 marks]

12. [Maximum mark: 19]

23N.2.AHL.TZ1.11

[1]

Consider the function defined by $f(x)rac{x^2-14x+24}{2x+6}$, where $x\in\mathbb{R}$, x
eq -3 .

(a) State the equation of the vertical asymptote on the graph of f.

Markscheme

(vertical asymptote equation) x = -3

Note: Accept 2x + 6 = 0 or equivalent.

[1 mark]

(b) Find the coordinates of the points where the graph of f crosses the x-axis.

[2]

Markscheme

$$(2,0)$$
 and $(12,0)$

Note: Award A1 for (2,0) and A1 for (12,0).

Award **A1A0** if only x values are given.

[2 marks]

The graph of f also has an oblique asymptote of the form y=ax+b , where $a,\ b\in\mathbb{Q}.$

(c) Find the value of a and the value of b.

[4]

Markscheme

METHOD 1

$$a=rac{1}{2}$$
 A1

attempt at 'long division' on $\frac{x^2-14x+24}{2x+6}$ (M1)

$$\frac{x^2 - 14x + 24}{2x + 6}$$

$$= \frac{1}{2}x - \frac{17}{2}(+\frac{\dots}{2x+6})$$
 (A1)

$$b = -\frac{17}{2} \qquad \textbf{A1}$$

Note: Accept $y = \frac{1}{2}x - \frac{17}{2}$.

METHOD 2

$$a=rac{1}{2}$$
 A1

$$rac{x^2-14x+24}{2x+6} \equiv rac{1}{2}x + b + rac{c}{2x+6}$$
 (A1)

$$x^2 - 14x + 24 \equiv \frac{1}{2}x(2x + 6) + b(2x + 6) + c$$

attempt to equate coefficients of x: (M1)

$$-14 = 3 + 2b$$

$$b = -\frac{17}{2}$$

Note: Accept $y = \frac{1}{2}x - \frac{17}{2}$.

METHOD 3

$$a=\frac{1}{2}$$
 A1

$$rac{x^2-14x+24}{2x+6}-rac{1}{2}x\equivrac{-17+24}{2x+6}$$
 (A1)

attempt to find the limit of f(x) - ax as $x o \infty$

$$b=\lim_{x o\infty}rac{-17x+24}{2x+6}$$

$$=$$
 $-\frac{17}{2}$ A1

Note: Accept $y = \frac{1}{2}x - \frac{17}{2}$.

[4 marks]

(d) Sketch the graph of f for $-50 \le x \le 50$, showing clearly the asymptotes and any intersections with the axes.

[4]

Markscheme

two branches with approximately correct shape (for $-50 \le x \le 50$) **A1**

Note: For this **A1** the graph must be a function.

their vertical and oblique asymptotes in approximately correct positions with both branches showing correct asymptotic behaviour to these asymptotes **A1A1**

Note: Award *A1* for vertical asymptote and behaviour and *A1* for oblique asymptote and behaviour. If only top half of the graph seen only award *A1A0* if both asymptotes and behaviour are seen.

their axes intercepts in approximately the correct positions A1

Note: Points of intersection with the axes and the equations of asymptotes do not need to be labelled. Ignore incorrect labels

[4 marks]

Markscheme

$$\left(-10\ -\ 5\sqrt{3}\ =
ight)-\ 18.\,6602\ldots$$
 OR $\left(-\ 10\ +\ 5\sqrt{3}\ =
ight)-1.\,33974\ldots$ seen anywhere $\,$ (A1)

attempt to write the range using at least one value in an interval or an inequality in y or f(x) (M1)

$$y \leq -18.7, y \geq -1.34$$
 A1A1

Note: Award *A1* for each inequality. Award *A1A0* for strict inequalities in both.

Do not award FT from (d).

Accept equivalent set notation.

[4 marks]

(f) Solve the inequality f(x) > x.

solve the inequality $f(\omega)$

Markscheme

$$igg(-10\ -\ 2\sqrt{31}=igg)-21.\,1355\ldots$$
 OR $igg(-10\ +\ 2\sqrt{31}\ =igg)1.\,13522\ldots$ seen anywhere (A1)

$$x < -21.1, -3 < x < 1.14$$

Note: Award **A1** for x<-21. 1, **A1** for correct endpoints of a single interval -3 and 1. 14 and for **A1** for -3< x<1. 14.

Do not award FT from (d).

Accept equivalent set notation.

[4]

13. [Maximum mark: 7]

23M.1.AHL.TZ1.8

Part of the graph of a function, f, is shown in the following diagram. The graph of y=f(x) has a y-intercept at $(0,\ 3)$, an x-intercept at $(a,\ 0)$ and a horizontal asymptote y=-2.

Consider the function g(x) = |f(|x|)|.

(a) On the following grid, sketch the graph of y=g(x), labelling any axis intercepts and giving the equation of the asymptote.

Markscheme

attempt to reflect f in the x OR y axis (M1)

A1A1A1

Note: For a curve with an approximately correct shaped right-hand branch, award:

A1 for correct asymptotic behaviour at y=2 (either side)

A1 for correctly reflected RHS of the graph in the y-axis with smooth maximum at $(0,\ 3)$.

A1 for labelled x-intercept at (-a,0) and labelled asymptote at y=2 with sharp points (cusps) at the x-intercepts.

[4 marks]

(b) Find the possible values of k such that $\Big(g(x)\big)^2=k$ has exactly two solutions.

[3]

Markscheme

$$k=0$$
 At

$$4 \le k < 9$$
 A2

Note: If final answer incorrect, award $\emph{A1}$ for critical values 4 and 9 seen anywhere.

Exception to FT:

Award a maximum of **A0A2FT** if their graph from (a) is not symmetric about the y-axis.

[3 marks]

14. [Maximum mark: 8] 22M.1.AHL.TZ2.3 A function f is defined by $f(x)=rac{2x-1}{x+1}$, where $x\in\mathbb{R},\ x
eq -1.$

The graph of y=f(x) has a vertical asymptote and a horizontal asymptote.

(a.i) Write down the equation of the vertical asymptote.

[1]

Markscheme

$$x=-1$$
 A1

[1 mark]

(a.ii) Write down the equation of the horizontal asymptote.

[1]

Markscheme

$$y=2$$
 A1

[1 mark]

(b) On the set of axes below, sketch the graph of y=f(x).

On your sketch, clearly indicate the asymptotes and the position of any points of intersection with the axes.

[3]

Markscheme

rational function shape with two branches in opposite quadrants, with two correctly positioned asymptotes and asymptotic behaviour shown *A1*

axes intercepts clearly shown at $x=rac{1}{2}$ and y=-1

[3 marks]

(c) Hence, solve the inequality $0<\frac{2x-1}{x+1}<2$.

Markscheme

$$x>rac{1}{2}$$
 A1

Note: Accept correct alternative correct notation, such as $(\frac{1}{2}, \infty)$ and $]\frac{1}{2}, \infty[$.

[2]

[1 mark]

(d) Solve the inequality
$$0<rac{2|x|-1}{|x|+1}<2$$
.

Markscheme

EITHER

attempts to sketch
$$y=rac{2|x|-1}{|x|+1}$$
 (M1)

OR

attempts to solve
$$2|x|-1=0$$
 (M1)

Note: Award the *(M1)* if $x=\frac{1}{2}$ and $x=-\frac{1}{2}$ are identified.

THEN

$$x<-rac{1}{2}$$
 or $x>rac{1}{2}$ \qquad A1

Note: Accept the use of a comma. Condone the use of 'and'. Accept correct alternative notation.

[2 marks]

15. [Maximum mark: 11]

21N.2.AHL.TZ0.10

Consider the function $f(x)=rac{x^2-x-12}{2x-15},\ x\in\mathbb{R},\ x
eq rac{15}{2}.$

Find the coordinates where the graph of f crosses the

(a.i) x-axis. [2]

Markscheme

Note: In part (a), penalise once only, if correct values are given instead of correct coordinates.

attempts to solve $x^2-x-12=0$ (M1)

(-3,0) and (4,0)

[2 marks]

(a.ii) y-axis. [1]

Markscheme

Note: In part (a), penalise once only, if correct values are given instead of correct coordinates.

$$(0,\frac{4}{5})$$
 A1

[1 mark]

(a.iii) Write down the equation of the vertical asymptote of the graph of f.

[1]

Markscheme

$$x=rac{15}{2}$$
 A1

Note: Award **A0** for $x \neq \frac{15}{2}$.

Award **A1** in part (b), if $x=\frac{15}{2}$ is seen on their graph in part (d).

[1 mark]

(a.iiii) The oblique asymptote of the graph of f can be written as y=ax+b where $a,\ b\in\mathbb{Q}.$

Find the value of a and the value of b.

[4]

Markscheme

METHOD 1

$$(ax+b)(2x-15)\equiv x^2-x-12$$

attempts to expand (ax+b)(2x-15) (M1)

$$2ax^2 - 15ax + 2bx - 15b \equiv x^2 - x - 12$$

$$a=rac{1}{2}$$
 A1

equates coefficients of x (M1)

$$-1 = -rac{15}{2} + 2b$$

$$b=rac{13}{4}$$
 A1

$$\left(y = \frac{x}{2} + \frac{13}{4}\right)$$

METHOD 2

attempts division on $\frac{x^2-x-12}{2x-15}$ *M1*

$$\frac{x}{2} + \frac{13}{4} + \dots$$
 M1

$$a=rac{1}{2}$$
 A1

$$b=rac{13}{4}$$
 A1

$$\left(y = \frac{x}{2} + \frac{13}{4}\right)$$

METHOD 3

$$a=rac{1}{2}$$
 A1

$$rac{x^2-x-12}{2x-15} \equiv rac{x}{2} + b + rac{c}{2x-15}$$
 M1

$$x^2 - x - 12 \equiv rac{(2x - 15)x}{2} + (2x - 15)b + c$$

equates coefficients of x: (M1)

$$-1 = -rac{15}{2} + 2b$$

$$b=rac{13}{4}$$
 A1

$$\left(y = \frac{x}{2} + \frac{13}{4}\right)$$

METHOD 4

attempts division on $\frac{x^2-x-12}{2x-15}$ \qquad $\it M1$

$$\frac{x^2 - x - 12}{2x - 15} = \frac{x}{2} + \frac{\frac{13x}{2} - 12}{2x - 15}$$

$$a=rac{1}{2}$$
 A1

$$rac{rac{13x}{2}-12}{2x-15}=rac{13}{4}+\dots$$
 M1

$$b=rac{13}{4}$$
 A1

$$\left(y = \frac{x}{2} + \frac{13}{4}\right)$$

[4 marks]

(a.iiiii) Sketch the graph of f for $-30 \leq x \leq 30$, clearly indicating the points of intersection with each axis and any asymptotes.

Markscheme

[3]

two branches with approximately correct shape (for $-30 \le x \le 30$)

their vertical and oblique asymptotes in approximately correct positions with both branches showing correct asymptotic behaviour to these asymptotes A1

their axes intercepts in approximately the correct positions A1

Note: Points of intersection with the axes and the equations of asymptotes are not required to be labelled.

[3 marks]

16. [Maximum mark: 7]

SPM.2.AHL.TZ0.8

The complex numbers w and z satisfy the equations

$$\frac{w}{z} = 2i$$

$$z^* - 3w = 5 + 5i$$
.

Find w and z in the form $a+b{
m i}$ where a, ${
m b}\in \mathbb{Z}$.

[7]

Markscheme

substituting $w=2\mathrm{i}z$ into $\mathrm{z}^*-3w=5+5\mathrm{i}$ $\,$ M1 $\,$

$$z^* - 6iz = 5 + 5i$$
 A1

$$let z = x + yi$$

comparing real and imaginary parts of

$$(x-yi) - 6i(x+yi) = 5 + 5i$$
 M1

to obtain
$$x+6y=5$$
 and $-6x-y=5$ $\,\,$ A1 $\,\,$

attempting to solve for x and y) $\it M1$

$$x=-1$$
 and $y=1$ so $z=-1+\mathrm{i}$ $\,$ A1 $\,$

hence
$$w=-2-2\mathrm{i}$$
 $\,$ A1

[7 marks]

17. [Maximum mark: 5]

23N.1.AHL.TZ1.7

It is given that $z=5+q{
m i}$ satisfies the equation $z^2+{
m i}z=-p+25{
m i}$, where $p,\ q\ \in \mathbb{R}$.

Find the value of \boldsymbol{p} and the value of \boldsymbol{q} .

[5]

Markscheme

METHOD 1

attempt to substitute solution into given equation (M1)

$$(5+qi)^2 + i(5+qi) = -p + 25i$$

$$25 - q^2 + 10q\mathrm{i} - q + 5\mathrm{i} + p - 25\mathrm{i} = 0\,\mathrm{OR}$$

$$25 - q^2 + 10q\mathrm{i} - q + 5\mathrm{i} = -p + 25\mathrm{i}$$
 A1

$$25 - q^2 + p - q + (10q - 20)i = 0$$

attempt to equate real or imaginary parts: (M1)

$$10q - 20 = 0$$
 or $25 - q^2 + p - q = 0$

$$q=2,\; p=-19$$

METHOD 2

$$z^2 + iz + p - 25i = 0$$

sum of roots $=-\mathrm{i}$, product of roots $=p-25\mathrm{i}$

one root is $(5+q\mathrm{i})$ so other root is $(-5-q\mathrm{i}-\mathrm{i})$

product

$$(5+q\mathrm{i})(-5-q\mathrm{i}-\mathrm{i}) = -25-5q\mathrm{i}-5\mathrm{i}-5q\mathrm{i}+q^2+q=p-25\mathrm{i}$$

equating real and imaginary parts for product of roots (M1)

Im:
$$-25=10q-5$$
 Re: $p=-25+q^2+q$

$$q = 2, \ p = -19$$
 A1A1

[5 marks]

Consider the quartic equation

$$z^4 + 4z^3 + 8z^2 + 80z + 400 = 0, z \in \mathbb{C}.$$

Two of the roots of this equation are $a+b{
m i}$ and $b+a{
m i}$, where $a,\ b\in \mathbb{Z}.$

Find the possible values of a.

[8]

Markscheme

METHOD 1

other two roots are $a-b{
m i}$ and $b-a{
m i}$

sum of roots = -4 and product of roots = 400

attempt to set sum of four roots equal to $-4\,\mathrm{or}\,4\,\mathrm{OR}$ attempt to set product of four roots equal to $400\,$

$$a + bi + a - bi + b + ai + b - ai = -4$$

$$2a+2b=-4(\Rightarrow a+b=-2)$$
 A1

$$(a + bi)(a - bi)(b + ai)(b - ai) = 400$$

$$\left(a^{2}+b^{2}\right)^{2}=400$$
 A1

$$a^2 + b^2 = 20$$

attempt to solve simultaneous equations (M1)

$$a=2$$
 or $a=-4$ A1A1

METHOD 2

other two roots are $a-b{
m i}$ and $b-a{
m i}$

$$(z-(a+b\mathrm{i}))(z-(a-b\mathrm{i}))(z-(b+a\mathrm{i}))(z-(b-a\mathrm{i}))(=0)$$

$$\Big((z-a)^2+b^2\Big)\Big((z-b)^2+a^2\Big)(=0)$$
 $\Big(z^2-2az+a^2+b^2\Big)\Big(z^2-2bz+b^2+a^2\Big)(=0)$ A1

Attempt to equate coefficient of z^3 and constant with the given quartic equation $\it M1$

$$-2a-2b=4$$
 and $\left(a^{2}+b^{2}
ight) ^{2}=400$ A1

attempt to solve simultaneous equations (M1)

$$a=2$$
 or $a=-4$ A1A1

[8 marks]

19. [Maximum mark: 5] Consider the equation $rac{2z}{3-z^*}={
m i}$, where $z=x+{
m i} y$ and $x,\ y\in\mathbb{R}.$

20N.1.AHL.TZ0.H_4

[5]

Find the value of x and the value of y.

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

substituting $z=x+\mathrm{i} y$ and $z^*=x-\mathrm{i} y$

$$\frac{2(x+\mathrm{i}y)}{3-(x-\mathrm{i}y)} = \mathrm{i}$$

$$2x + 2\mathrm{i}y = -y + \mathrm{i}(3 - x)$$

equate real and imaginary: M1

$$y=-2x$$
 and $2y=3-x$

Note: If they multiply top and bottom by the conjugate, the equations $6x-2x^2+2y^2=0$ and $6y-4xy=(3-x)^2+y^2$ may be seen. Allow for **A1**.

solving simultaneously:

$$x=-1,\ y=2\ (z=-1+2{\rm i})$$
 A1A1

[5 marks]

19N.1.AHL.TZ0.H 5

(a) Solve the equation, giving the solutions in the form $a+{
m i}b$, where $a,\,b\in\mathbb{R}.$

Markscheme

METHOD 1

$$|z|=\sqrt[4]{4}\left(=\sqrt{2}
ight)$$
 (A1)

$$rg\left(z_{1}
ight)=rac{\pi}{4}$$
 (A1)

first solution is 1+i $\hspace{1em}$ $\hspace{1em}$

valid attempt to find all roots (De Moivre or +/- their components) (M1)

other solutions are -1+i, -1-i, 1-i $\ \it A1$

METHOD 2

$$z^4 = -4$$

$$\left(a + \mathrm{i}b\right)^4 = -4$$

attempt to expand and equate **both** reals and imaginaries. (M1)

$$a^4 + 4a^3bi - 6a^2b^2 - 4ab^3i + b^4 = -4$$

$$ig(a^4-6a^4+a^4=-4\Rightarrowig)a=\pm 1$$
 and $ig(4a^3b-4ab^3=0\Rightarrowig)a=\pm b$ (A1)

first solution is 1+i $\hspace{0.1in}$ $\hspace{0.1in}$ $\hspace{0.1in}$ $\hspace{0.1in}$

valid attempt to find all roots (De Moivre or +/- their components) (M1)

other solutions are -1+i, -1-i, 1-i $\hspace{1.5cm}$ $\hspace{1.5cm}$ $\hspace{1.5cm}$ $\hspace{1.5cm}$ $\hspace{1.5cm}$ $\hspace{1.5cm}$ $\hspace{1.5cm}$ $\hspace{1.5cm}$ $\hspace{1.5cm}$

[5 marks]

(b) The solutions form the vertices of a polygon in the complex plane. Find the area of the polygon.

Markscheme

complete method to find area of 'rectangle' (M1)

=4 A1

[2 marks]

[2]

[6]

Let
$$P\left(z
ight)=az^{3}-37z^{2}+66z-10$$
 , where $z\in\mathbb{C}$ and $a\in\mathbb{Z}$.

One of the roots of
$$P\left(z
ight)=0$$
 is $3+\mathrm{i}$. Find the value of a .

Markscheme

METHOD 1

one other root is 3-i $\hspace{0.2in}$ $\hspace{0.2in}$ $\hspace{0.2in}$ $\hspace{0.2in}$ $\hspace{0.2in}$ $\hspace{0.2in}$

let third root be α (M1)

considering sum or product of roots (M1)

sum of roots
$$=6+lpha=rac{37}{a}$$
 Az

product of roots
$$=10lpha=rac{10}{a}$$

hence a=6 A1

METHOD 2

one other root is 3-i A1

quadratic factor will be $z^2-6z+10$ (M1)A1

$$P\left(z
ight) = az^3 - 37z^2 + 66z - 10 = \left(z^2 - 6z + 10\right)\left(az - 1\right)$$

comparing coefficients (M1)

hence a=6

METHOD 3

substitute $3+\mathrm{i}$ into $P\left(z\right)$ (M1)

$$a\left(18+26\mathrm{i}\right)-37\left(8+6\mathrm{i}\right)+66\left(3+\mathrm{i}\right)-10=0$$
 (M1)A1

equating real or imaginary parts or dividing M1

$$18a-296+198-10=0$$
 or $26a-222+66=0$ or $\frac{10-66(3+\mathrm{i})+37(8+6\mathrm{i})}{18+26\mathrm{i}}$

hence a=6 A1

[6 marks]

© International Baccalaureate Organization, 2024