Revision questions [170 marks]

- 1. [Maximum mark: 6] 23M.1.AHL.TZ1.7 Consider $P(z) = 4m - mz + \frac{36}{m}z^2 - z^3$, where $z \in \mathbb{C}$ and $m \in \mathbb{R}^+$. Given that z - 3i is a factor of P(z), find the roots of P(z) = 0. [6]
- 2. [Maximum mark: 7] 22N.1.AHL.TZ0.5 Consider the equation $z^4+pz^3+54z^2-108z+80=0$ where $z\in\mathbb{C}$ and $p\in\mathbb{R}.$

Three of the roots of the equation are $3+\mathrm{i},\ lpha$ and $lpha^2$, where $lpha\in\mathbb{R}.$

- (a) By considering the product of all the roots of the equation, find the value of α. [4]
 (b) Find the value of p. [3]
- 3. [Maximum mark: 16] 22N.1.AHL.TZ0.11 Consider a three-digit code abc, where each of a, b and c is assigned one of the values 1, 2, 3, 4 or 5.

Find the total number of possible codes

(a.i) assuming that each value can be repeated (for example, 121 or 444).
(a.ii) assuming that no value is repeated.

Let $P(x) = x^3 + ax^2 + bx + c$, where each of a, b and c is assigned one of the values 1, 2, 3, 4 or 5. Assume that no value is repeated.

Consider the case where P(x) has a factor of $ig(x^2+3x+2ig).$

(b.i)	Find an expression for b in terms of a .	[6]
(b.ii)	Hence show that the only way to assign the values is $a=4,\ b=5$ and $c=2.$	[2]
(b.iii)	Express $P(x)$ as a product of linear factors.	[1]
(b.iv)	Hence or otherwise, sketch the graph of $y=P(x)$, clearly showing the coordinates of any intercepts with the axes.	[3]

4. [Maximum mark: 5] 21M.1.AHL.TZ2.7 The cubic equation
$$x^3-kx^2+3k=0$$
 where $k>0$ has roots $lpha,\ eta$ and $lpha+eta.$

Given that
$$lphaeta=-rac{k^2}{4}$$
 , find the value of k . [5]

5. [Maximum mark: 17] 19M.2.AHL.TZ1.H_11 Consider the equation $x^5-3x^4+mx^3+nx^2+px+q=0$, where m, $n,p,q\in\mathbb{R}.$

The equation has three distinct real roots which can be written as $\log_2 a$, $\log_2 b$ and $\log_2 c$.

The equation also has two imaginary roots, one of which is $d{f i}$ where $d\in {\mathbb R}.$

(a) Show that
$$abc=8$$
. [5]

The values a, b, and c are consecutive terms in a geometric sequence.

(b) Show that one of the real roots is equal to 1. [3]

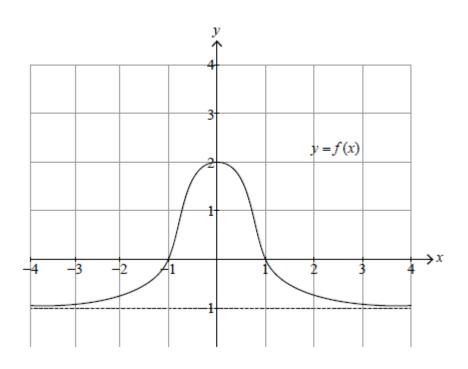
(c) Given that
$$q=8d^2$$
, find the other two real roots. [9]

6. [Maximum mark: 7] 18N.1.AHL.TZO.H_8 Consider the equation $z^4+az^3+bz^2+cz+d=0$, where $a,b,c,d\in\mathbb{R}$ and $z\in\mathbb{C}.$

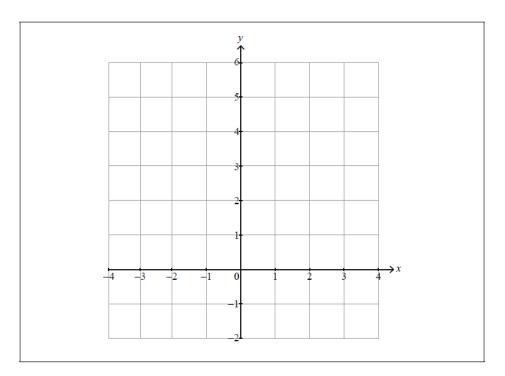
Two of the roots of the equation are $\log_2 6$ and $i\sqrt{3}$ and the sum of all the roots is 3 + $\log_2 3$.

Show that
$$6a + d + 12 = 0.$$
 [7]

7. [Maximum mark: 5] 18M.1.AHL.TZ1.H_1 Let $f(x) = x^4 + px^3 + qx + 5$ where p, q are constants.


The remainder when f(x) is divided by (x + 1) is 7, and the remainder when f(x) is divided by (x - 2) is 1. Find the value of p and the value of q. [5]

8. [Maximum mark: 5] 18M.2.AHL.TZ2.H_2 The polynomial $x^4 + px^3 + qx^2 + rx + 6$ is exactly divisible by each of (x - 1), (x - 2) and (x - 3).


[5]

Find the values of p, q and r.

9. [Maximum mark: 5] SPM.1.AHL.TZ0.4 The following diagram shows the graph of y = f(x). The graph has a horizontal asymptote at y = -1. The graph crosses the x-axis at x = -1 and x = 1, and the y-axis at y = 2.

On the following set of axes, sketch the graph of $y = [f(x)]^2 + 1$, clearly showing any asymptotes with their equations and the coordinates of any local maxima or minima.

10. [Maximum mark: 5]

Consider the graphs of $y=rac{x^2}{x-3}$ and $y=m\,(x+3)$, $m\in\mathbb{R}.$

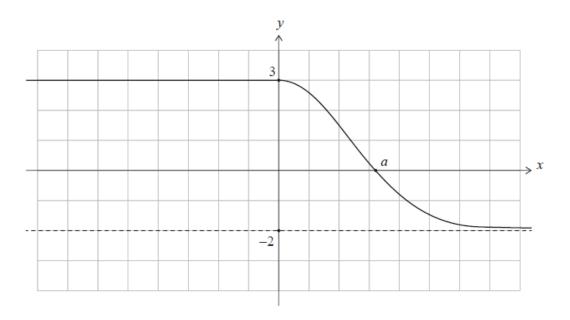
Find the set of values for m such that the two graphs have no intersection points.

SPM.2.AHL.TZ0.9

[5]

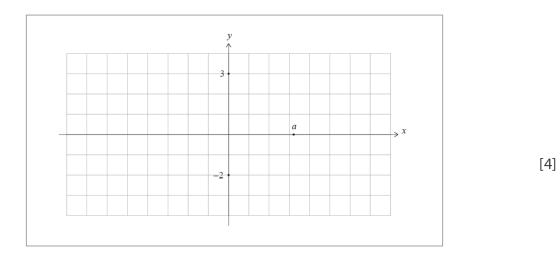
11.	[Maxi	mum mark: 9]	EXM.1.AHL.TZ0.5
	Let f	$(x)=rac{2x^2-5x-12}{x+2},x\in \mathbb{R},x eq -2.$	
	(a)	Find all the intercepts of the graph of $f\left(x ight)$ with both the x and y axes.	[4]
	(b)	Write down the equation of the vertical asymptote.	[1]
	(c)	As $x o \pm \infty$ the graph of $f\left(x ight)$ approaches an oblique straight line asymptote.	
		Divide $2x^2-5x-12$ by $x+2$ to find the equation of this asymptote.	5 [4]
12.		mum mark: 19] der the function defined by $f(x)rac{x^2-14x+24}{2x+6}$, where $x\in\mathbb{R}$, x	23N.2.AHL.TZ1.11 $ eq -3.$
	(a)	State the equation of the vertical asymptote on the graph of $f_{\rm s}$. [1]

(b) Find the coordinates of the points where the graph of f crosses the x-axis. [2]


The graph of f also has an oblique asymptote of the form y=ax+b, where $a,\ b\in\mathbb{Q}.$

(c)	Find the value of a and the value of b .	[4]
(d)	Sketch the graph of f for $-50 \leq x \leq 50$, showing clearly the asymptotes and any intersections with the axes.	[4]
(e)	Find the range of $f.$	[4]

- (f) Solve the inequality f(x) > x. [4]
- 13. [Maximum mark: 7]

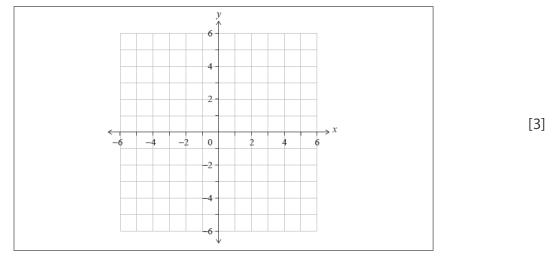

23M.1.AHL.TZ1.8

Part of the graph of a function, f, is shown in the following diagram. The graph of y = f(x) has a y-intercept at (0, 3), an x-intercept at (a, 0) and a horizontal asymptote y = -2.

Consider the function g(x) = |f(|x|)|.

(a) On the following grid, sketch the graph of y = g(x), labelling any axis intercepts and giving the equation of the asymptote.

(b) Find the possible values of k such that $\left(g(x)
ight)^2=k$ has exactly two solutions.


[3]

14. [Maximum mark: 8] 22M.1.AHL.TZ2.3 A function f is defined by $f(x)=rac{2x-1}{x+1}$, where $x\in\mathbb{R},\;x
eq-1.$

The graph of y=f(x) has a vertical asymptote and a horizontal asymptote.

- (a.i) Write down the equation of the vertical asymptote. [1]
- (a.ii) Write down the equation of the horizontal asymptote. [1]
- (b) On the set of axes below, sketch the graph of y=f(x).

On your sketch, clearly indicate the asymptotes and the position of any points of intersection with the axes.

(c) Hence, solve the inequality
$$0 < rac{2x-1}{x+1} < 2.$$
 [1]

(d) Solve the inequality
$$0 < rac{2|x|-1}{|x|+1} < 2.$$
 [2]

15. [Maximum mark: 11] 21N.2.AHL.TZ0.10
Consider the function
$$f(x)=rac{x^2-x-12}{2x-15}, \ x\in\mathbb{R}, \ x
eq rac{15}{2}.$$

Find the coordinates where the graph of f crosses the

(a.i)	x-axis.	[2]
(a.ii)	<i>y</i> -axis.	[1]
(a.iii)	Write down the equation of the vertical asymptote of the graph of $f.$	[1]
(a.iiii)	The oblique asymptote of the graph of f can be written as $y=ax+b$ where $a,\;b\in\mathbb{Q}.$	
	Find the value of a and the value of b .	[4]
(a.iiiii)	Sketch the graph of f for $-30 \leq x \leq 30$, clearly indicating the points of intersection with each axis and any asymptotes.	

16.	[Maximum mark: 7]	SPM.2.AHL.TZ0.8
	The complex numbers w and z satisfy the equations	
	$\frac{w}{z} = 2\mathrm{i}$	
	$z^* - 3w = 5 + 5i.$	
	Find w and z in the form $a+b{ m i}$ where $a,{ m b}\in\mathbb{Z}.$	[7]
17.	[Maximum mark: 5]	23N.1.AHL.TZ1.7
	It is given that $z=5+q\mathrm{i}$ satisfies the equation	
	$z^2+\mathrm{i}z=-p+25\mathrm{i}$, where $p,\;q\;\in\mathbb{R}.$	
	Find the value of p and the value of $q.$	[5]

- **18.** [Maximum mark: 8]21M.1.AHL.TZ1.7Consider the quartic equation $z^4 + 4z^3 + 8z^2 + 80z + 400 = 0, z \in \mathbb{C}.$ Two of the roots of this equation are a + bi and b + ai, where $a, b \in \mathbb{Z}.$ Find the possible values of a.
- 19. [Maximum mark: 5] 20N.1.AHL.TZ0.H_4 Consider the equation $rac{2z}{3-z^*}={
 m i}$, where $z=x+{
 m i}y$ and $x,\ y\in\mathbb{R}.$

Find the value of x and the value of y.

plane. Find the area of the polygon.

- 20. [Maximum mark: 7] 19N.1.AHL.TZ0.H_5 Consider the equation $z^4=-4$, where $z\in\mathbb{C}$.
 - (a) Solve the equation, giving the solutions in the form $a + {
 m i}b$, where $a, b \in \mathbb{R}$. [5] (b) The solutions form the vertices of a polygon in the complex
- 21. [Maximum mark: 6] 19N.2.AHL.TZO.H_6 Let $P\left(z
 ight)=az^3-37z^2+66z-10$, where $z\in\mathbb{C}$ and $a\in\mathbb{Z}$. One of the roots of $P\left(z
 ight)=0$ is $3+\mathrm{i}$. Find the value of a. [6]

© International Baccalaureate Organization, 2024

[2]