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This presentation shows how to solve certain types of trigonometric equations,
starting from very basic ones and finishing with ones where some trigonometric
identities and algebraic manipulations are required.

Before you start with this presentation make sure you’re very familiar with:

- radian measure (in almost all equations we will use radians instead of
degrees);

- graphs of trigonometric functions (sin x , cos x , tan x , cot x), including basic
properties of these graphs (domain, range, period, etc.)

- values of trigonometric functions for standard angles (0, π
6 ,

π
4 ,

π
3 ,

π
2 );

- reduction formulae (eg. sin(π − x) = sin x or sin(π2 − x) = cos x)

- trigonometric identities: Pythagorean identity, double angle identities, angle
sum and difference identities, sum-to-product identities (the last one is not
strictly speaking required by IB, but it will be required in my class as it often
helps a lot).
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Important note

This presentation is for your use only. Please do not share it publicly. In particular
do not post it online anywhere.
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Plan

We will cover the following topics:

• basic trigonometric equations,

• variations of basic trigonometric equations,

• factorization of trig equations,

• using Pythagorean identity,

• using double angle identities,

• using angle sum and difference identities,

• using sum-to-product identities,

• some harder examples,

• exam questions from Polish matura,

• IB exam questions.
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Basic trigonometric equations - example 1

We will start with the following equation:

sin x =

√
3

2

We want to draw one period of the sine function (eg. from −π to π) and the line

y =
√
3
2 .
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Basic trigonometric equations - example 1

We can see two solutions (red points). We should know one of those (from tables
of values of standard angles), we can find the other one using symmetries of the
graph.
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Basic trigonometric equations - example 1

Our solutions are x = π
3 and x = 2π

3
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Basic trigonometric equations - example 1

So the solutions to

sin x =

√
3

2
are:

x =
π

3
+ 2kπ or x =

2π

3
+ 2kπ

where k ∈ Z, so k is an integer.

Where does the 2kπ come from? We only drew one period of sine, the values
repeat themselves every 2π, so adding or subtracting any multiple of 2π to x will
not change the value of the function.

Tomasz Lechowski DP1 AA HL October 16, 2024 8 / 140



Basic trigonometric equations - example 1

So the solutions to

sin x =

√
3

2
are:

x =
π

3
+ 2kπ or x =

2π

3
+ 2kπ

where k ∈ Z, so k is an integer.

Where does the 2kπ come from? We only drew one period of sine, the values
repeat themselves every 2π, so adding or subtracting any multiple of 2π to x will
not change the value of the function.

Tomasz Lechowski DP1 AA HL October 16, 2024 8 / 140



Basic trigonometric equations - example 1

So the solutions to

sin x =

√
3

2
are:

x =
π

3
+ 2kπ or x =

2π

3
+ 2kπ

where k ∈ Z, so k is an integer.

Where does the 2kπ come from? We only drew one period of sine, the values
repeat themselves every 2π, so adding or subtracting any multiple of 2π to x will
not change the value of the function.

Tomasz Lechowski DP1 AA HL October 16, 2024 8 / 140



Basic trigonometric equations - example 1

So the solutions to

sin x =

√
3

2
are:

x =
π

3
+ 2kπ or x =

2π

3
+ 2kπ

where k ∈ Z, so k is an integer.

Where does the 2kπ come from? We only drew one period of sine, the values
repeat themselves every 2π, so adding or subtracting any multiple of 2π to x will
not change the value of the function.

Tomasz Lechowski DP1 AA HL October 16, 2024 8 / 140



Basic trigonometric equations - example 2

Now we want to solve:

cos x =

√
2

2

We draw one period of the cosine function (again it can be from −π to π) and

the line y =
√
2
2 .
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Basic trigonometric equations - example 2

We can see two solutions (red points). We should know one of those solutions
and we can find the other one using symmetries of the graph.

Tomasz Lechowski DP1 AA HL October 16, 2024 10 / 140



Basic trigonometric equations - example 2

We can see two solutions (red points). We should know one of those solutions
and we can find the other one using symmetries of the graph.

Tomasz Lechowski DP1 AA HL October 16, 2024 10 / 140



Basic trigonometric equations - example 2

We can see two solutions (red points). We should know one of those solutions
and we can find the other one using symmetries of the graph.

Tomasz Lechowski DP1 AA HL October 16, 2024 10 / 140



Basic trigonometric equations - example 2

One solution is x = π
4 , the other is of course x = −π

4 .
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Basic trigonometric equations - example 2

Finally we get that the solutions to the equation

cos x =

√
2

2

are:
x =

π

4
+ 2kπ or x = −π

4
+ 2kπ

where k ∈ Z.
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Basic trigonometric equations - example 3

Solve:

tan x =

√
3

3

We draw one period of tangent function (remember that the period of tan x is π,

it’s best to draw it from −π
2 to π

2 ) and the line y =
√
3
3 .
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Basic trigonometric equations - example 3

There’s one solution (red point). We know it from the table of standard angles,
x = π

6 .

Tomasz Lechowski DP1 AA HL October 16, 2024 14 / 140



Basic trigonometric equations - example 3

There’s one solution (red point). We know it from the table of standard angles,
x = π

6 .

Tomasz Lechowski DP1 AA HL October 16, 2024 14 / 140



Basic trigonometric equations - example 3

There’s one solution (red point). We know it from the table of standard angles,
x = π

6 .

Tomasz Lechowski DP1 AA HL October 16, 2024 14 / 140



Basic trigonometric equations - example 3
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Basic trigonometric equations - example 4

Solve:
cot x = 1

We draw one period of cotangent function (the period is π, we’ll draw it between
0 and π) and the line y = 1.
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Basic trigonometric equations - example 4

We can see one solution (red point). It is x = π
4 .
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Basic trigonometric equations - example 4

Therefore the solutions to
cot x = 1

are:
x =

π

4
+ kπ

where k ∈ Z.
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Basic trigonometric equations - exercises

Solve the following equations:

• Equation:

sin x =
1

2

Solution:

x =
π

6
+ 2kπ or x =

5π

6
+ 2kπ where k ∈ Z

• Equation:
cos x = 0

Solution:
x =

π

2
+ kπ where k ∈ Z
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Basic trigonometric equations - exercises

• Equation:
tan x =

√
3

Solution:
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Basic trigonometric equations - example 5

Solve the equation:
sin x = −1

We draw one period of sine function and the line y = −1.
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Basic trigonometric equations - example 5

We can see one solution, it’s of course x = −π
2 .
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Basic trigonometric equations - example 5

The solutions to
sin x = −1

are:
x = −π

2
+ 2kπ

where k ∈ Z.
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Basic trigonometric equations - example 6

Solve:

cos x = −1

2

We draw one period of cosine function and the line y = − 1
2 .
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Basic trigonometric equations - example 6

We can see two solutions. If we were to solve cos x = 1
2 , then we would know

that x = π
3 is one of the solutions, here we can use the symmetry to get x = 2π

3
as a solution and then we also get x = − 2π

3 .
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Basic trigonometric equations - example 6
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Basic trigonometric equations - example 7

Solve:
tan x = −1

As always we draw one period of tangent function and the line y = −1.
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Basic trigonometric equations - example 7

There’s one solution. If we were to solve tan x = 1, the solution would be x = π
4 ,

so here we of course have x = −π
4
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Basic trigonometric equations - example 7

So the solutions to
tan x = −1

are:
x = −π

4
+ kπ

where k ∈ Z.
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Basic trigonometric equations - example 8

Solve:
cot x = −

√
3

We draw one period of cotangent function and the line y = −
√
3.
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Basic trigonometric equations - example 8

There’s one solution. Solving cot x =
√
3 would give us x = π

6 , so here we have
x = π − π

6 = 5π
6
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Basic trigonometric equations - exercises

Solve the following equations:

• Equation:

sin x = −
√
3

2

Solutions:

x = −π

3
+ 2kπ or x = −2π

3
+ 2kπ wheree k ∈ Z

• Equation:

cos x = −
√
2

2

Solutions:

x = −3π

4
+ 2kπ or x =

3π

4
+ 2kπ where k ∈ Z
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Basic trigonometric equations - example 9

In the examples above we found all solutions to a given equation. However in
almost all IB trig equation questions you’ll be required to find solutions that are
in a specific interval.
Solve

sin x =

√
2

2

for 0 ≤ x ≤ 3π.

This is even simpler. We draw y =
√
2
2 and y = sin x , but only for 0 ≤ x ≤ 3π.
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Basic trigonometric equations - example 9

We have four solutions. We should know one from the table and find the rest
using symmetries and periodicity of the graph.
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Basic trigonometric equations - example 9

The solutions to

sin x =

√
2

2

for 0 ≤ x ≤ 3π are x = π
4 or x = 3π

4 or x = 9π
4 or x = 11π

4 .
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Basic trigonometric equations - example 10

Solve

cos x = −
√
3

2

for −2π ≤ x ≤ π.

We draw y = −
√
3
2 and y = cos x , but only for −2π ≤ x ≤ π.
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We draw y = −
√
3
2 and y = cos x , but only for −2π ≤ x ≤ π.
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Basic trigonometric equations - example 10

We have 3 solutions. If we were solving cos x =
√
3
2 , then we would have x = π

6
as a solution, based on that and symmetries we can find the actual solutions.
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Basic trigonometric equations - example 10

The solutions to

cos x = −
√
3

2

for −2π ≤ x ≤ π are x = − 7π
6 or x = − 5π

6 or x = 5π
6 .
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Basic trigonometric equations - exercises

• Solve:
tan x = −1

for −π ≤ x ≤ π.
Solution:

x = −π

4
or x =

3π

4

• Solve:
sin x = 1

for −π ≤ x ≤ 3π
Solution:

x =
π

2
or x =

5π

2
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The ability to solve simple trigonometric equations is the basis for more
complicated equations. In the end we will almost always arrive at the simple ones.
In the following examples I’ll assume that you can solve the basic equations with
ease, so make sure you practice those before moving on.

On the following slides I’ll skip the step with drawing graphs, but you should still
do it. It is a very useful habit. What it means is that when you get to a basic trig
equation you should solve it as above - quick sketch and read of the solutions.
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We move on to equations where some algebraic manipulation is required.

Tomasz Lechowski DP1 AA HL October 16, 2024 43 / 140



Variations of basic equations - example 1

Solve:
2 sin(3x) + 4 = 3

We rewrite it in the form

sin(3x) = −1

2

and now we solve as a basic trig equation (but instead of x we have 3x), so we
get:

3x = −π

6
+ 2kπ or 3x = −5π

6
+ 2kπ where k ∈ Z

Now we divide by 3, to get x :

x = − π

18
+

2kπ

3
or x = −5π

18
+

2kπ

3
where k ∈ Z

and this is our solution.
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Note that when solving

sin(3x) = −1

2

We don’t need to draw sin(3x) (sine squeezed by a factor of 1
3 ). It’s better to

draw sinα (so the usual graph of sine), solve for α and then put 3x instead of α.

We will get back to this in a few slides.

Tomasz Lechowski DP1 AA HL October 16, 2024 45 / 140



Note that when solving

sin(3x) = −1

2

We don’t need to draw sin(3x) (sine squeezed by a factor of 1
3 ). It’s better to

draw sinα (so the usual graph of sine), solve for α and then put 3x instead of α.

We will get back to this in a few slides.

Tomasz Lechowski DP1 AA HL October 16, 2024 45 / 140



Variations of basic equations - example 2

Solve:
cos(2x − π

3
) + 1 = 0

We rewrite in the form:
cos(2x − π

3
) = −1

and we solve as a basic equation (instead of x we have 2x − π
3 ), we get:

2x − π

3
= π + 2kπ where k ∈ Z

rearrange to find x :

x =
2π

3
+ kπ where k ∈ Z

and that’s our solution.

Tomasz Lechowski DP1 AA HL October 16, 2024 46 / 140



Variations of basic equations - example 2

Solve:
cos(2x − π

3
) + 1 = 0

We rewrite in the form:
cos(2x − π

3
) = −1

and we solve as a basic equation (instead of x we have 2x − π
3 ), we get:

2x − π

3
= π + 2kπ where k ∈ Z

rearrange to find x :

x =
2π

3
+ kπ where k ∈ Z

and that’s our solution.

Tomasz Lechowski DP1 AA HL October 16, 2024 46 / 140



Variations of basic equations - example 2

Solve:
cos(2x − π

3
) + 1 = 0

We rewrite in the form:
cos(2x − π

3
) = −1

and we solve as a basic equation (instead of x we have 2x − π
3 ), we get:

2x − π

3
= π + 2kπ where k ∈ Z

rearrange to find x :

x =
2π

3
+ kπ where k ∈ Z

and that’s our solution.

Tomasz Lechowski DP1 AA HL October 16, 2024 46 / 140



Variations of basic equations - example 2

Solve:
cos(2x − π

3
) + 1 = 0

We rewrite in the form:
cos(2x − π

3
) = −1

and we solve as a basic equation (instead of x we have 2x − π
3 ), we get:

2x − π

3
= π + 2kπ where k ∈ Z

rearrange to find x :

x =
2π

3
+ kπ where k ∈ Z

and that’s our solution.

Tomasz Lechowski DP1 AA HL October 16, 2024 46 / 140



Variations of basic equations - example 2

Solve:
cos(2x − π

3
) + 1 = 0

We rewrite in the form:
cos(2x − π

3
) = −1

and we solve as a basic equation (instead of x we have 2x − π
3 ), we get:

2x − π

3
= π + 2kπ where k ∈ Z

rearrange to find x :

x =
2π

3
+ kπ where k ∈ Z

and that’s our solution.

Tomasz Lechowski DP1 AA HL October 16, 2024 46 / 140



Variations of basic equations - example 3

Solve:
tan2(5x)− 3 = 0

We get to:
tan(5x) = −

√
3 or tan(5x) =

√
3

we solve two basic equations (instead of x we have 5x), we get:

5x = −π

3
+ kπ or 5x =

π

3
+ kπ where k ∈ Z

rearrange to find x :

x = − π

15
+

kπ

5
or x =

π

15
+

kπ

5
where k ∈ Z

and that’s it.
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Variations of basic equations - example 4

Solve:

3 cot2
(
x

2

)
= 1

Rearrange and get to:

cot

(
x

2

)
= −

√
3

3
or cot

(
x

2

)
=

√
3

3

we now solve two basic equations (instead of x we have x
2 ), we get:

x

2
= −π

3
+ kπ or

x

2
=

π

3
+ kπ where k ∈ Z

Multiply by 2 to get x :

x = −2π

3
+ 2kπ or x =

2π

3
+ 2kπ where k ∈ Z

and that’s our solution.
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Variations of basic equations - example 5

Solve:
|2 cos(3x)− 1| = 1

We rearrange and solve to get:

cos(3x) = 0 or cos(3x) = 1

we solve two basic equations (instead of x we have 3x), we get:

3x =
π

2
+ kπ or 3x = 2kπ where k ∈ Z

divide by 3 to get x :

x =
π

6
+

kπ

3
or x =

2kπ

3
where k ∈ Z

and we have the solution.
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Variations of basic equations - example 6

Solve:
|2 sin(7x) + 1| = 2

We rearrange to get:

sin(7x) = −3

2
or sin(7x) =

1

2

the first equation has no solutions, we solve the second one (instead of x we have
7x), we get:

7x =
π

6
+ 2kπ or 7x =

5π

6
+ 2kπ where k ∈ Z

divide by 7 to get x :

x =
π

42
+

2kπ

7
or x =

5π

42
+

2kπ

7
where k ∈ Z

and that’s our solution.
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Variations of basic equations - exercises

• Equation:
2 sin2(5x)− 1 = 0

Solution:

x =
π

20
+

kπ

5
or x =

3π

20
+

kπ

5
where k ∈ Z

• Equation:

|2 cos
(
x

3

)
− 3| = 2

Solution:

x = −π + 6kπ or x = π + 6kπ where k ∈ Z
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Variations of basic equations - exercises

• Equation:

3 tan2(2x − π

2
)− 1 = 0

Solution:

x =
π

6
+

kπ

2
or x =

π

3
+

kπ

2
where k ∈ Z

• Equation:
|2 cot(4x)− 1| = 1

Solution:

x =
π

16
+

kπ

4
or x =

π

8
+

kπ

4
where k ∈ Z
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Variations of basic equations - example 7

Again, we will usually have a specified interval for x :
Solve:

2 cos 4x − 1 = 0

for 0 ≤ x ≤ π.

Here we can use two methods (I recommend the latter). The first is to forget
about the interval for a moment and solve as above We get:

4x =
π

3
+ 2kπ or 4x = −π

3
+ 2kπ where k ∈ Z

so:

x =
π

12
+

kπ

2
or x = − π

12
+

kπ

2
where k ∈ Z
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Variations of basic equations - example 7

x =
π

12
+

kπ

2
or x = − π

12
+

kπ

2
where k ∈ Z

Now we need to choose values of k , so that our solutions will satisfy 0 ≤ x ≤ π.
After brief deliberation we get: x = π

12 or x = π
12 +

π
2 = 7π

12 or x = − π
12 +

π
2 = 5π

12
or x = − π

12 + 2π
2 = 11π

12 . So we have four solutions.

Let’s go back to the beginning:

2 cos 4x − 1 = 0

with 0 ≤ x ≤ π.
The second method is to set α = 4x , now we solve:

2 cosα− 1 = 0

but 0 ≤ α ≤ 4π. Remember to change the interval!
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Variations of basic equations - example 8

Solve:

sin2
(
x

2

)
=

3

4

for −2π ≤ x ≤ 6π.

We let α = x
2 and get:

sin2 α =
3

4

with −π ≤ α ≤ 3π.
This gives:

sinα = ±
√
3

2
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Variations of basic equations - example 8

We’re solving

sinα = ±
√
3

2

for −π ≤ α ≤ 3π. We draw the graph of sine and the lines y = ±
√
3
2 in the given

interval and find the solutions. There should be 8 of them:

α ∈
{
−2π

3
,−π

3
,
π

3
,
2π

3
,
4π

3
,
5π

3
,
7π

3
,
8π

3

}
We go back to x . Since α = x

2 , so we have x = 2α, this gives the following
solutions:

x ∈
{
−4π

3
,−2π

3
,
2π

3
,
4π

3
,
8π

3
,
10π

3
,
14π

3
,
16π

3

}
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Variations of basic equations - exercises

• Solve:

cos2(3x) =
1

2

for 0 ≤ x ≤ π
2 . Solution:

x =
π

12
or x =

π

4
or x =

5π

12

• Solve
tan2(2x) = 3

with −π ≤ x ≤ π
2 . Solution:

x ∈
{
−5π

6
,−2π

3
,−π

3
,−π

6
,
π

6
,
π

3

}
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Now we move on to equations which can be easily factored resulting in two or
more basic equations.
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Factoring - example 1

Solve:
2 sin2 x + sin x − 1 = 0

We have a disguised quadratic (we could substitute s = sin x and solve), let’s try
factoring. We rewrite the LHS in a factored form:

(2 sin x − 1)(sin x + 1) = 0

This gives:

sin(x) =
1

2
or sin(x) = −1

We solve these basic equations to get:

x =
π

6
+ 2kπ or x =

5π

6
+ 2kπ or x = −π

2
+ 2kπ where k ∈ Z
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Factoring - example 2

Solve:
2 cos2 x − 3 cos x − 2 = 0

We factorize:
(2 cos x + 1)(cos x − 2) = 0

We get:

cos(x) = −1

2
lub cos(x) = 2

There’s no solutions to the second equation, solving the first one gives:

x = −2π

3
+ 2kπ or x =

2π

3
+ 2kπ where k ∈ Z
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Factoring - example 3

Solve:
2 sin x cos x − 2 sin x + cos x − 1 = 0

We can first factor out 2 sin x from the first two terms, this gives:

2 sin x(cos x − 1) + cos x − 1 = 0

So we have:
(2 sin x + 1)(cos x − 1) = 0

So:

sin(x) = −1

2
lub cos(x) = 1

Now we solve and get:

x = −π

6
+ 2kπ or x = −5π

6
+ 2kπ or x = 2kπ where k ∈ Z
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lub cos(x) = 1

Now we solve and get:

x = −π

6
+ 2kπ or x = −5π

6
+ 2kπ or x = 2kπ where k ∈ Z
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Factoring - example 4

Solve:
3 tan4 x − 10 tan2 x + 3 = 0

We can set t = tan2 x , but let’s try factoring again:

(3 tan2 x − 1)(tan2 x − 3) = 0

We can continue factoring (using difference of squares) or we can just write that:

tan(x) = ±
√
3

3
lub tan(x) = ±

√
3

We solve and get:

x =
π

6
+

kπ

2
or x =

π

3
+

kπ

2
where k ∈ Z

Think about this solution. Make sure you understand where it came from.
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Factoring - exercises

• Solve:
2 cos2 x − cos x − 3 = 0

Solution:
x = π + 2kπ where k ∈ Z

• Solve:
sin x cos x + sin x − cos x − 1 = 0

Solution:

x =
π

2
+ 2kπ or x = π + 2kπ where k ∈ Z
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Factoring - exercises

• Solve:
cot3 x − cot2 x − 3 cot x + 3 = 0

Solution:

x =
π

4
+ kπ or x =

π

6
+ kπ or x =

5π

6
+ kπ where k ∈ Z

• Solve:
sin3 x − 4 sin2 x − sin x + 4 = 0

Solution:
x =

π

2
+ kπ where k ∈ Z
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We increase the difficulty slightly. We add the Pythagorean identity to our arsenal.
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Pythagorean identity - introduction

The Pythagorean identity is probably the most famous trigonometric identity. For
any angle x we have:

sin2 x + cos2 x = 1

We can use it to solve simple problems like:

Simple problem

Given an angle α, such that cosα = 1
3 and 3π

2 < α < 2π, calculate sinα and
cotα.

We have sin x = − 2
√
2

3 and cot x = −
√
2
4 . Refer to chapter 8E in Core HL if you

forgot about these types of problems.
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Pythagorean identity - introduction

Remember that the Pythagorean identity works for any angle x , so we have

sin2 31◦ + cos2 31◦ = 1

sin2
π

7
+ cos2

π

7
= 1

but also:
sin2(3α) + cos2(3α) = 1

sin2
(
x

2
− π

)
+ cos2

(
x

2
− π

)
= 1

Solving trig equations using Pythagorean identity boils down to simplifying the
equation so that it can be solved using previous methods.
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Pythagorean identity - introduction

Note that there are two very simple consequences of Pythagorean identity, namely:

tan2 x + 1 = sec2 x

1 + cot2 x = csc2 x

They of course can be derived by dividing the Pythagorean identity by cos2 x and
sin2 x respectively.
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Pythagorean identity - example 1

Solve:
5 sin x − 2 cos2 x = 1

We use Pythagorean identity to replace −2 cos2 x with 2 sin2 x − 2 and we get:

2 sin2 x + 5 sin x − 3 = 0

Factorize:
(2 sin x − 1)(sin x + 3) = 0

We now solve and get:

x =
π

6
+ 2kπ or x =

5π

6
+ 2kπ where k ∈ Z
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Pythagorean identity - example 2

Solve the equation:
2 sin2 3x + cos 3x = 1

We use the Pythagorean identity to change 2 sin2 3x into 2− 2 cos2 3x , and we
get:

2 cos2 3x − cos 3x − 1 = 0

Factorize:
(2 cos 3x + 1)(cos 3x − 1) = 0

we now solve and get that:

x = −2π

9
+

2kπ

3
or x =

2π

9
+

2kπ

3
or x =

2kπ

3
where k ∈ Z
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Pythagorean identity - exercises

• Equation:
2 sin x = 2 + cos2 x

Solution:
x =

π

2
+ 2kπ where k ∈ Z

• Equation:
2 cos2 2x + 7 sin 2x + 2 = 0

Solution:

x = − π

12
+ kπ or x = −5π

12
+ kπ where k ∈ Z
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We increase the difficulty. It may happen that we get different angles in the same
equation. If the equation is something like:

(sin 3x − 1)(2 cos 2x − 1) = 0

then there’s no problem. We have 3x and 2x , but we easily get two basic
equations. The solutions are:

x =
π

6
+

2kπ

3
or x = −π

6
+ kπ or x =

π

6
+ kπ gdzie k ∈ Z

It may however happen that it’s not so simple and then the goal would be to
make sure that we have the same angle everywhere.
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Double angle formulae - introduction

Formulae that you have to remember:

sin 2x = 2 sin x cos x

cos 2x = cos2 x − sin2 x =

= 2 cos2 x − 1 =

= 1− 2 sin2 x

In case of cosine we in fact have 3 formulae and we use the one which suits us.

tan 2x =
2 tan x

1− tan2 x
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Double angle formulae - introduction

Remember that these formulae work regardless of the angle, so in particular we
have:

sin 10◦ = 2 sin 5◦ cos 5◦

sin 8α = 2 sin 4α cos 4α

cos(10x) = 1− 2 sin2(5x)

cos(x) = cos2
(
x

2

)
− sin2

(
x

2

)

tan

(
θ

2

)
=

2 tan( θ4 )

1− tan2( θ4 )

The angle on the left hand side has to be twice the angle on the right hand side.
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Double angle - example 1

Solve:
sin 2x + sin x = 0

We use double angle formula for sine (sin 2x = 2 sin x cos x) and get:

2 sin x cos x + sin x = 0

We factor out sin x and we get:

sin x(2 cos x + 1) = 0

solve the above to get:

x = kπ or x = −2π

3
+ 2kπ or x =

2π

3
+ 2kπ where k ∈ Z
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Double angle - example 2

Solve
cos(6x)− 3 cos(3x) + 1 = 0

We use double angle formula for cosine (cos 6x = 2 cos2(3x)− 1), we get:

2 cos2(3x)− 3 cos(3x) = 0

Factor out cos(3x):
cos(3x)(2 cos(3x)− 3) = 0

solve to get:

3x =
π

2
+ kπ where k ∈ Z

so:

x =
π

6
+

kπ

3
where k ∈ Z
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Double angle - example 3

Solve:
cos 4x + 4 sin 2x + 5 = 0

We use double angle formula (cos 4x = 1− 2 sin2 2x), we get:

−2 sin2 2x + 4 sin 2x + 6 = 0

Divide by −2 and factorize:

(sin 2x + 1)(sin 2x − 3) = 0

solve and get (the second equation has no solutions):

2x =
3π

2
+ 2kπ where k ∈ Z

so:

x =
3π

4
+ kπ where k ∈ Z
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Double angle - exercises

• Equation:

sin x − 2 cos
x

2
= 0

Solution:
x = π + 2kπ where k ∈ Z

• Equation:
cos 4x + 2 sin 2x cos 2x + 1 = 0

Solution:

x =
π

4
+

kπ

2
or x = −π

8
+

kπ

2
where k ∈ Z
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Formula for sine/cosine of sum/difference of angles -
introduction

We have the following formulae for sine and cosine of sum and difference of
angles:

sin(α± β) = sinα cosβ ± cosα sinβ

cos(α± β) = cosα cosβ ∓ sinα sinβ

tan(α± β) =
tanα± tanβ

1∓ tanα tanβ

They can be used to calculate for example sin( 7π12 ) or cos 15
◦:

sin

(
7π

12

)
= sin

(
3π

12
+

4π

12

)
= sin

(
π

4
+

π

3

)
=

= sin
π

4
cos

π

3
+ cos

π

4
sin

π

3
=

√
2

2
· 1
2
+

√
2

2
·
√
3

2
=

√
2 +

√
6

4
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Formula for sine/cosine of sum/difference of angles -
introduction

cos 15◦ = cos(45◦ − 30◦) = cos 45◦ cos 30◦ + sin 45◦ sin 30◦ =

=

√
2

2
·
√
3

2
+

√
2

2
· 1
2
=

√
6 +

√
2

4

We get the same result. This, of course, is no accident, we have 7π
12 = 105◦, so

sin 105◦ = sin(180− 75◦) = sin 75◦ = cos(90◦ − 75◦) = cos 15◦.

When solving equations we will in most cases use the formulae in the opposite
direction.
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Formula for sine/cosine of sum/difference of angles -
example 1

Solve
sin x +

√
3 cos x =

√
2

We have a sum so it’s appropriate to change it to cosine of a difference or sine of
a sum. We will do the later. We want to change 1 into cosine and

√
3 into a sine.

By drawing an appropriate triangle we can see that the hypotenuse is 2 (so we

need to divide both sides by 2) and the required angle is α =
π

3
:

1

2
sin x +

√
3

2
cos x =

√
2

2

So we get:

cos
π

3
sin x + sin

π

3
cos x =

√
2

2
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π

3
:

1

2
sin x +

√
3

2
cos x =

√
2

2

So we get:

cos
π

3
sin x + sin

π

3
cos x =

√
2

2
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Formula for sine/cosine of sum/difference of angles -
example 1
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Formula for sine/cosine of sum/difference of angles -
example 1

Now we can apply the formula for the sine of the sum of angles to get:

sin

(
x +

π

3

)
=

√
2

2

Note that we could have tried to use the formula for cosine of a difference of the
angles. In which case we would need to change 1 into sine and

√
3 into cosine.

The hypotenuse is still 2, but the angle is α =
π

6
, so we would get:

sin
π

6
sin x + cos

π

6
cos x =

√
2

2

Applying the formula for the cosine of a difference we get:

cos

(
x − π

6

)
=

√
2

2
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Formula for sine/cosine of sum/difference of angles -
example 1

Going back, we have:

sin

(
x +

π

3

)
=

√
2

2

This is simple now, we have:

x +
π

3
=

π

4
+ 2kπ lub x +

π

3
=

3π

4
+ 2kπ gdzie k ∈ Z

so:

x = − π

12
+ 2kπ lub x =

5π

12
+ 2kπ gdzie k ∈ Z
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Formula for sine/cosine of sum/difference of angles -
example 1

If we used the formula for cosine of a difference we would end up with:

cos

(
x − π

6

)
=

√
2

2

This gives:

x − π

6
= −π

4
+ 2kπ lub x − π

6
=

π

4
+ 2kπ gdzie k ∈ Z

and the final answer is of course the same.
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Formula for sine/cosine of sum/difference of angles -
example 2

Solve:
sin x − cos x =

√
2

We can use sine of a difference here. We draw an appropriate triangle, the

hypotenuse is
√
2 and the angle is α =

π

4
. So we divide both side by

√
2.

1√
2
sin x − 1√

2
cos x = 1

so:
cos

π

4
sin x − sin

π

4
cos x = 1

Now apply the formula for sine of a difference:

sin

(
x − π

4

)
= 1
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Formula for sine/cosine of sum/difference of angles -
example 2
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Formula for sine/cosine of sum/difference of angles -
example 2

sin

(
x − π

4

)
= 1

this gives:

x − π

4
=

π

2
+ 2kπ where k ∈ Z

So finally we get:

x =
3π

4
+ 2kπ where k ∈ Z
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Formula for sine/cosine of sum/difference of angles -
example 3

Solve: √
3 sin x + cos x = 1

We can apply the formula for sine of a sum. We draw a triangle with adjacent

side
√
3 and opposite side 1. The hypotenuse is 2 and the angle is α =

π

6
. So we

divide both sides by 2: √
3

2
sin x +

1

2
cos x =

1

2
so:

cos
π

6
sin x + sin

π

6
cos x =

1

2

Applying the formula we get:

sin

(
x +

π

6

)
=

1

2
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Formula for sine/cosine of sum/difference of angles -
example 3

sin
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π

6
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2
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π
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π
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Formula for sine/cosine of sum/difference of angles -
example 4

Solve:

sin 3x + cos 3x = −
√
6

2
The fact that instead of x we have 3x makes no difference. We draw a triangle
with both adjacent and opposite sides being 1. The hypotenuse is

√
2 and the

angle is α =
π

6
. We divide both side by

√
2.

1√
2
sin 3x +

1√
2
cos 3x = −

√
12

4

so:

cos
π

4
sin 3x + sin

π

4
cos 3x = −

√
3

2
Using formula for sine of a sum we get:

sin

(
3x +

π

4

)
= −

√
3

2
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Formula for sine/cosine of sum/difference of angles -
example 4

sin

(
3x +

π

4

)
= −

√
3

2

we get

3x +
π

4
= −π

3
+ 2kπ or 3x +

π

4
= −2π

3
+ 2kπ where k ∈ Z

So in the end we get:

x = −7π

36
+

2kπ

3
or x = −11π

36
+

2kπ

3
where k ∈ Z
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Formula for sine/cosine of sum/difference of angles -
exercise

• Solve:
sin 2x −

√
3 cos 2x = 1

Solution:

x =
π

4
+ kπ or x =

7π

12
+ kπ where k ∈ Z
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Now we move to the final set of examples, where we apply formulae for sums and
differences of sines and cosines.
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Formulae for sum and difference of sine/cosine -
introduction

These are not required by IB, but nevertheless useful. They’re not included in the
formula booklet so you should learn them by heart (in fact it’s best to learn the
ones in the formula booklet by heart as well).

sinα+ sinβ = 2 sin

(
α+ β

2

)
cos

(
α− β

2

)
sinα− sinβ = 2 sin

(
α− β

2

)
cos

(
α+ β

2

)
cosα+ cosβ = 2 cos

(
α+ β

2

)
cos

(
α− β

2

)
cosα− cosβ = −2 sin

(
α+ β

2

)
sin

(
α− β

2

)
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Formulae for sum and difference of sine/cosine - example 1

Solve:
sin x + sin 2x = 0

We of course use the formula for the sum of the sine:

2 sin
3x

2
cos

x

2
= 0

so we get:
3x

2
= kπ or

x

2
=

π

2
+ kπ where k ∈ Z

and finally:

x =
2kπ

3
or x = π + 2kπ where k ∈ Z

We’ve solve the above equation earlier using sin 2x = 2 sin x cos x . Compare the
answers. At first glance you may think that we got different solutions, but if you
study it carefully you will see that they are indeed the same.
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x =
2kπ

3
or x = π + 2kπ where k ∈ Z

We’ve solve the above equation earlier using sin 2x = 2 sin x cos x . Compare the
answers. At first glance you may think that we got different solutions, but if you
study it carefully you will see that they are indeed the same.
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Formulae for sum and difference of sine/cosine - example 2

Solve:
cos x + cos 2x + cos 3x = 0

We use the formula for the sum of cosine to cos x + cos 3x . Why? Because we
get 2 cos 2x cos(−x) i cos 2x and we will be able to factorize the expression:

2 cos 2x cos(−x) + cos 2x = 0

factor out cos 2x (and change cos(−x) to cos x):

cos 2x(2 cos x + 1) = 0

This gives:

2x =
π

2
+ kπ or x = −2π

3
+ 2kπ or x =

2π

3
+ 2kπ where k ∈ Z

In the end:

x =
π

4
+

kπ

2
or x = −2π

3
+ 2kπ or x =

2π

3
+ 2kπ where k ∈ Z
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Formulae for sum and difference of sine/cosine - example 3

Solve:
sin 2x − cos 3x = 0

This may seem problematic at first as there is no obvious formula that applies
here, but we can simply change cosine into sine using the formula that changes a
function into co-function:

sin 2x − sin(
π

2
− 3x) = 0

Now apply the formula for difference of sines:

2 sin

(
2x − (π2 − 3x)

2

)
cos

(
2x + (π2 − 3x)

2

)
= 0
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Formulae for sum and difference of sine/cosine - example 3

2 sin

(
2x − (π2 − 3x)

2

)
cos

(
2x + (π2 − 3x)

2

)
= 0

Simplify to get:

2 sin

(
5x

2
− π

4

)
cos

(
−x

2
+

π

4

)
= 0

This gives:

5x

2
− π

4
= kπ or − x

2
+

π

4
=

π

2
+ kπ where k ∈ Z

And finally:

x =
π

10
+

2kπ

5
or x = −π

2
+ 2kπ where k ∈ Z
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Formulae for sum and difference of sine/cosine - exercises

• Equation:
sin x = sin 3x

Solution:

x = kπ or x =
π

4
+

kπ

2
where k ∈ Z

• Equation:
sin x + sin 3x = sin 2x

Solution:

x =
kπ

2
or x = −π

3
+ 2kπ or x =

π

3
+ 2kπ where k ∈ Z
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Advanced examples

On the next slides we will look at some advanced examples, where we need to
make some important observations.

Make sure you think about these example before looking at the solutions. There
may be multiple ways to solve those.
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Advanced problems - example 1

Solve:
sin4 x + cos4 x = cos 2x

The first observation is that the left hand side can be written as
(sin2 x + cos2 x)2 − 2 sin2 x cos2 x , and the bracket is just 1 (using Pythagorean
identity). So we get:

1− 2 sin2 x cos2 x = cos 2x

Now we have two options. We can try to make all angles equal 2x or make them
all equal x . Let’s analyse both options.
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Advanced problems - example 1

1− 2 sin2 x cos2 x = cos 2x

We try to make all angles equal to 2x . Recall that sin 2x = 2 sin x cos x , so
sin2 2x = 4 sin2 x cos2 x . It makes sense to multiply our equation by 2 to get:

2− 4 sin2 x cos2 x = 2 cos 2x

so we get:
2− sin2 2x = 2 cos 2x

Now we can use Pythagorean identity to change − sin2 2x into cos2 2x − 1,and we
get (moving all terms to the left hand side):

cos2 2x − 2 cos 2x + 1 = 0

This is equivalent to:
(cos 2x − 1)2 = 0
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get (moving all terms to the left hand side):

cos2 2x − 2 cos 2x + 1 = 0

This is equivalent to:
(cos 2x − 1)2 = 0

Tomasz Lechowski DP1 AA HL October 16, 2024 102 / 140



Advanced problems - example 1

1− 2 sin2 x cos2 x = cos 2x

We try to make all angles equal to 2x . Recall that sin 2x = 2 sin x cos x , so
sin2 2x = 4 sin2 x cos2 x . It makes sense to multiply our equation by 2 to get:

2− 4 sin2 x cos2 x = 2 cos 2x

so we get:
2− sin2 2x = 2 cos 2x

Now we can use Pythagorean identity to change − sin2 2x into cos2 2x − 1,and we
get (moving all terms to the left hand side):

cos2 2x − 2 cos 2x + 1 = 0

This is equivalent to:
(cos 2x − 1)2 = 0

Tomasz Lechowski DP1 AA HL October 16, 2024 102 / 140



Advanced problems - example 1

1− 2 sin2 x cos2 x = cos 2x

We try to make all angles equal to 2x . Recall that sin 2x = 2 sin x cos x , so
sin2 2x = 4 sin2 x cos2 x . It makes sense to multiply our equation by 2 to get:

2− 4 sin2 x cos2 x = 2 cos 2x

so we get:
2− sin2 2x = 2 cos 2x

Now we can use Pythagorean identity to change − sin2 2x into cos2 2x − 1,and we
get (moving all terms to the left hand side):

cos2 2x − 2 cos 2x + 1 = 0

This is equivalent to:
(cos 2x − 1)2 = 0

Tomasz Lechowski DP1 AA HL October 16, 2024 102 / 140



Advanced problems - example 1

(cos 2x − 1)2 = 0

so cos 2x = 1, which gives:

2x = 2kπ gdzie k ∈ Z

hence:
x = kπ gdzie k ∈ Z

Tomasz Lechowski DP1 AA HL October 16, 2024 103 / 140



Advanced problems - example 1

(cos 2x − 1)2 = 0

so cos 2x = 1, which gives:

2x = 2kπ gdzie k ∈ Z

hence:
x = kπ gdzie k ∈ Z

Tomasz Lechowski DP1 AA HL October 16, 2024 103 / 140



Advanced problems - example 1

(cos 2x − 1)2 = 0

so cos 2x = 1, which gives:

2x = 2kπ gdzie k ∈ Z

hence:
x = kπ gdzie k ∈ Z

Tomasz Lechowski DP1 AA HL October 16, 2024 103 / 140



Advanced problems - example 1

Let’s go back to:
1− 2 sin2 x cos2 x = cos 2x

Let’s try to change the angles to x . We have three formulae for cos 2x , we will
use cos 2x = 1− 2 sin2 x , because this will allow us to cancel 1 on both sides
After moving all terms to one side we get:

2 sin2 x − 2 sin2 x cos2 x = 0

We factor out 2 sin2 x :
2 sin2 x(1− cos2 x) = 0

so sin x = 0 or cos x = ±1, both of these give:

x = kπ gdzie k ∈ Z
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Advanced problems - example 2

Solve:
sin 3x + cos 2x = 1 + 2 sin x cos 2x

We have 3 different angles: x , 2x i 3x . Let’s get rid of 3x first. We can write
sin 3x as sin(x + 2x) and we get:

sin x cos 2x + cos x sin 2x + cos 2x = 1 + 2 sin x cos 2x

Moving all terms to one side:

cos x sin 2x − sin x cos 2x + cos 2x − 1 = 0

The first two term give us a formula for sin(2x − x), so sin x . We change cos 2x
into 1− 2 sin2 x . We get:

sin x − 2 sin2 x = 0
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Advanced problems - example 2

sin x − 2 sin2 x = 0

We factor out sin x :
sin x(1− 2 sin x) = 0

which gives us the following solutions:

x = kπ or x =
π

6
+ 2kπ or x =

5π

6
+ 2kπ where k ∈ Z
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Advanced problems - example 3

Solve:
sin3 x + cos3 x = 1

We will change 1 into sin2 x + cos2 x and move all terms to one side

sin3 x − sin2 x + cos3 x − cos2 x = 0

We factor out sin2 x and cos2 x :

sin2 x(sin x − 1) + cos2 x(cos x − 1) = 0

Now an important observation. sin2 x ≥ 0, but sin x − 1 ≤ 0, because sine cannot
be greater than 1. Similarly cos2 x ≥ 0 and cos x − 1 ≤ 0.

So sin2 x(sin x − 1) ≤ 0 oraz cos2 x(cos x − 1) ≤ 0
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Advanced problems - example 3

sin2 x(sin x − 1) + cos2 x(cos x − 1) = 0

Both terms are non-positive, but their sum is 0, so they both must be 0.

sin2 x(sin x − 1) = 0 and cos2 x(cos x − 1) = 0

Solving this gives::

x = 2kπ or x =
π

2
+ 2kπ where k ∈ Z
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Advanced problems - example 4

Solve:
cos x − cos 3x = sin x − sin 3x

Seems obvious that we want to apply the formula for sum of sines and cosines:

−2 sin 2x sin(−x) = 2 sin(−x) cos 2x

Sine is an odd function, so sin(−x) = − sin x , using this and moving all terms to
one side:

2 sin 2x sin x + 2 sin x cos 2x = 0

Factoring out 2 sin x :
2 sin x(sin 2x + cos 2x) = 0
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Advanced problems - example 4

2 sin x(sin 2x + cos 2x) = 0

So sin x = 0 or sin 2x = − cos 2x . The second equation can be turned into
tan 2x = −1 (by dividing both sides by cos x). We solve and get:

x = kπ or 2x = −π

4
+ kπ where k ∈ Z

So finally we have:

x = kπ or x = −π

8
+

kπ

2
where k ∈ Z
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Advanced problems - example 5

Solve:
sin2 x + sin2 2x = sin2 3x

Move all terms to one side:

sin2 x − sin2 3x + sin2 2x = 0

We can use difference of squares (with the hope that we can get sin 2x to factor
out):

(sin x − sin 3x)(sin x + sin 3x) + sin2 2x = 0

We use the formula for sum and difference of sines:

2 sin(−x) cos 2x · 2 sin 2x cos x + sin2 2x = 0
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We use the formula for sum and difference of sines:

2 sin(−x) cos 2x · 2 sin 2x cos x + sin2 2x = 0
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Advanced problems - example 5

2 sin(−x) cos 2x · 2 sin 2x cos x + sin2 2x = 0

We have that sin(−x) = − sin x and we get:

−4 sin x cos x cos 2x sin 2x + sin2 2x = 0

Now we have the expression sin x cos x which should remind us of the formula
sin 2x = 2 sin x cos x , we use it to get:

−2 cos 2x sin2 2x + sin2 2x = 0

Now it’s a breeze, we factor out sin2 2x :

sin2 2x(1− 2 cos 2x) = 0
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Advanced problems - example 5

sin2 2x(1− 2 cos 2x) = 0

We get:

2x = kπ or 2x = −π

3
+ 2kπ or 2x =

π

3
+ 2kπ where k ∈ Z

So the final answer is:

x =
kπ

2
or x = −π

6
+ kπ or x =

π

6
+ kπ where k ∈ Z
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Advanced problems - example 6

Solve:
cot 8x cot 10x = −1

We will start with the domain (usually the domain of the equation is specified in
IB questions, but it’s useful to do it anyway)

8x ̸= kπ and 10x ̸= kπ

so

x ̸= kπ

8
and x ̸= kπ

10

Now we will use the fact that cot x = cos x
sin x :

cos 8x cos 10x

sin 8x sin 10x
= −1
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Advanced problems - example 6

cos 8x cos 10x

sin 8x sin 10x
= −1

Multiply by the denominator (which we know is non-zero) and move to one side
to get:

cos 8x cos 10x + sin 8x sin 10x = 0

This looks like a formula for a cosine of a difference. We get:

cos 2x = 0

So:

x =
π

4
+

kπ

2
where k ∈ Z

But beware, all of these solutions are outside of our domain, so in the end our
equation has no solutions.

x ∈ ∅
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The next slides include problems that appeared on a Polish Matura (advanced
level).
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Polish Matura - problem 1

May 2015, simple multiple choice question to begin with:

This is a very important question, because it shows that it’s always important to
think about the equation before solving it. sin x is less than or equal to 1,
similarly cos x , so the left hand side is certainly not greater than 5 (note that the
maximum value of the left hand side is of course (find it)

√
13), so there’ll be no

solutions - answer A.
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Polish Matura - problem 2

May 2017,

We change cos 2x into 2 cos2 x − 1. Move all terms to one side to get:

2 cos2 x + 3 cos x + 1 = 0

Factorize:
(2 cos x + 1)(cos x + 1) = 0

Now we sketch the graph of cosine for 0 ≤ x ≤ 2π. We get:

x =
2π

3
or x = π or x =

4π

3
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Polish Matura - problem 3

May 2018,

We change sin 6x into 2 sin 3x cos 3x :

2 sin 3x cos 3x + cos 3x = 2 sin 3x + 1

Factor out cos 3x and move all terms to one side:

cos 3x(2 sin 3x + 1)− (2 sin 3x + 1) = 0

Now we can factor out (2 sin 3x + 1):

(2 sin 3x + 1)(cos 3x − 1) = 0
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Polish Matura - problem 3

(2 sin 3x + 1)(cos 3x − 1) = 0

Now it’s fairly simple, beware though that we have 3x and the domain is
0 ≤ x ≤ π. We subsitute α = 3x and then we have 0 ≤ α ≤ 3π. We now get the
following solutions:

α =
7π

6
or α =

11π

6
or α = 0 or α = 2π

Since α = 3x , then x = α
3 , so:

x =
7π

18
or x =

11π

18
or x = 0 or x =

2π

3
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following solutions:

α =
7π

6
or α =
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6
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Polish Matura - problem 4

May 2019,

If we remember the formulae, then we should immediately notice
cos 2x = cos2 x − sin2 x , so we get::

cos2 105◦ − sin2 105◦ = cos 210◦ = cos(180◦ + 30◦) = − cos 30◦ = −
√
3

2

Answer A.
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Polish Matura - problem 5

May 2019,

Looks complicated, but the first step is obvious - we add the sines using
appropriate formula. We get:

cos x · 2 sin x cos π
3
=

1

2
sin x

Now it becomes very simple. Of course we have cos π
3 = 1

2 . We move all terms to
one side and we get:

sin x cos x − 1

2
sin x = 0
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Polish Matura - problem 5

sin x cos x − 1

2
sin x = 0

We factor out sin x :

sin x(cos x − 1

2
) = 0

This gives:

x = kπ or x = −π

3
+ 2kπ or x =

π

3
+ 2kπ where k ∈ Z
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Now we move on to IB exam questions.
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IB exam - problem 1

Note that the interval is in degrees - this is unusual. It’s quite obvious that we
will use double angle formula for tangent:

tan x +
2 tan x

1− tan2 x
= 0

Now it makes sense to multiply both sides by 1− tan2 x to get:

tan x − tan3 x + 2 tan x = 0
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IB exam - problem 1

Now this is very easy, factoring tan x we get:

tan x(3− tan2 x) = 0

So tan x = 0 or tan x = ±
√
3. We should draw the graph of tan x for

0◦ ≤ x < 360◦, so that we don’t miss any solutions. In the end we get:

x ∈ {0◦, 60◦, 120◦, 180◦, 240◦, 300◦}
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IB exam - problem 2

We will start by using double angle formulae for sine and cosine. For cosine it
makes sense to use cos 2x = 2 cos2 x − 1, because this will allow us to cancel 1 on
both sides. We get:

2 sin x cos x − 2 cos2 x + 1 = 1 + sin x − cos x

Moving all terms to one side we get:

2 sin x cos x − 2 cos2 x − sin x + cos x = 0
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IB exam - problem 2

This looks doable now. Factor 2 cos x from the first two terms and −1 from the
next two:

2 cos x(sin x − cos x)− (sin x − cos x) = 0

This gives:
(sin x − cos x)(2 cos x − 1) = 0

So we have sin x = cos x , which gives tan x = 1 or from the second bracket
cos x = 1

2 . These are easy to solve. We draw tan x and cos x in the interval
−π ≤ x ≤ π and get that:

x ∈
{
−3π

4
,−π

3
,
π

4
,
π

3

}
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IB exam - problem 3

The first part is easy, since we’re given all the information.

Tomasz Lechowski DP1 AA HL October 16, 2024 129 / 140



IB exam - problem 3

The first part is easy, since we’re given all the information.

Tomasz Lechowski DP1 AA HL October 16, 2024 129 / 140



IB exam - problem 3 (a)

We will start with the left hand side:

LHS =

√
3− 1

sin π
12

+

√
3 + 1

cos π
12

=

=
4(
√
3− 1)√

6−
√
2

+
4(
√
3 + 1)√

6 +
√
2

=

=
4(
√
3− 1)√

2(
√
3− 1)

+
4(
√
3 + 1)√

2(
√
3 + 1)

=

=
4√
2
+

4√
2
=

=
8√
2
=

8
√
2

2
= 4

√
2 = RHS

so x =
π

12
is a solution.

Tomasz Lechowski DP1 AA HL October 16, 2024 130 / 140



IB exam - problem 3 (b)

We can multiply both sides by sin x cos x to get rid of denominators. We get

(
√
3− 1) cos x + (

√
3 + 1) sin x = 4

√
2 sin x cos x

Now we can try to use the formula for sine of sums on the left hand side. The
opposite side is

√
3− 1, the adjacent side is

√
3 + 1. The hypotenuse is 2

√
2.

The angle then becomes
π

12
. We divide both sides by 2

√
2:

√
3− 1

2
√
2

cos x +

√
3 + 1

2
√
2

sin x = 2 sin x cos x

This is happens to be perfect for the right hand side as well.
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IB exam - problem 3 (b)

We get:

sin
π

12
cos x + cos

π

12
sin x = sin 2x

Apply the formula for the sine of sum:

sin

(
π

12
+ x

)
= sin 2x

Now there are two ways to proceed. We can move all terms to one side and use
the formula for difference of sines:

sin

(
π

12
+ x

)
− sin 2x = 0

So:

2 sin

( π
12 − x

2

)
cos

( π
12 + 3x

2

)
= 0
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Now there are two ways to proceed. We can move all terms to one side and use
the formula for difference of sines:

sin

(
π

12
+ x

)
− sin 2x = 0

So:

2 sin

( π
12 − x

2

)
cos

( π
12 + 3x

2

)
= 0
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IB exam - problem 3 (b)

2 sin

( π
12 − x

2

)
cos

( π
12 + 3x

2

)
= 0

Solving the first part (sine) in the required interval gives:

π
12 − x

2
= 0

which gives x =
π

12
an answer we already had. Solving the second part (cosine)

gives:
π
12 + 3x

2
=

π

2

So x =
11π

36
and this is our second solution.
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IB exam - problem 3 (b)

Let’s go back to:

sin

(
π

12
+ x

)
= sin 2x

and let’s discuss another approach.
We have sine function on both sides. Of course if the arguments are the same
then the values will also be the same, so we can have:

π

12
+ x = 2x

and this gives x =
π

12
.

But two sines are also equal if one argument is π minus the other
(sinα = sin(π − α)), so we could also have:

π

12
+ x = π − 2x

and this gives the solution x =
11π

36
.
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IB exam - problem 3 (b)

Note that in general if we have:

sinα = sinβ

Then:

α = β or α = π − β or α = 2π + β or α = 3π − β or ...

If we have:
cosα = cosβ

Then

α = β or α = 2π − β or α = 2π + β or α = 4π − β or ...
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IB exam - problem 4

Note that this is part of a longer question which involved topics we haven’t
covered yet.
For part (a) it makes sense to apply the formula for the sine and cosine of sums.
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IB exam - problem 4 (a)

We get:

2(sin x cos 60◦ + sin 60◦ cos x) = cos x cos 30◦ − sin x sin 30◦

Now this becomes:

sin x +
√
3 cos x =

√
3

2
cos x − 1

2
sin x

This gives:
3 sin x = −

√
3 cos x

which is equivalent to:

tan x = −
√
3

3

In the given interval we have only one solution, namely x = 150◦.
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IB exam - problem 4 (b)

For part (b) we can calculate both sine and cosine separately using angles 60◦

and 45◦, so that we have:

LHS = sin 105◦ + cos 105◦ =

= sin(60◦ + 45◦) + cos(60◦ + 45◦) =

= sin 60◦ cos 45◦ + sin 45◦ cos 60◦ + cos 60◦ cos 45◦ − sin 60◦ sin 45◦ =

=

√
6

4
+

√
2

4
+

√
2

4
−

√
6

4
=

√
2

2
=

1√
2
= RHS

Tomasz Lechowski DP1 AA HL October 16, 2024 138 / 140



IB exam - problem 4 (b)

For part (b) we can calculate both sine and cosine separately using angles 60◦

and 45◦, so that we have:

LHS = sin 105◦ + cos 105◦ =

= sin(60◦ + 45◦) + cos(60◦ + 45◦) =

= sin 60◦ cos 45◦ + sin 45◦ cos 60◦ + cos 60◦ cos 45◦ − sin 60◦ sin 45◦ =

=

√
6

4
+

√
2

4
+

√
2

4
−

√
6

4
=

√
2

2
=

1√
2
= RHS

Tomasz Lechowski DP1 AA HL October 16, 2024 138 / 140



IB exam - problem 4 (b)

Alternatively we can change cos 105◦ into − sin 15◦ and apply the formula for
difference of sines:

LHS = sin 105◦ + cos 105◦ =

= sin 105◦ − sin 15◦ =

= 2 sin 45◦ cos 60◦ =

√
2

2
=

1√
2
= RHS
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That’s it. That’s all the basics. Note that all IB questions will require you to
solve trigonometric equations in a specific interval, but it’s still useful to be aware
of the general solution. Make sure you understand all examples discussed in the
presentation.
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