1.

 $[4 \ points]$ (a) Write $\sin x + \cos x$ in the form $R \sin(x + \alpha)$, where R and α are to be found with R > 0 and $0 < \alpha < \frac{\pi}{2}$.

(b) Hence solve the equation:

$$\sin x + \cos x = \frac{\sqrt{2}}{2}$$

for $0 \leq x \leq 2\pi$.

 $[5 \ points]$

2.

(a) Show that:

 $4\cos^3 x = \cos(3x) + 3\cos(x)$

(b) Hence solve the equation:

$$\cos(3x) + 3\cos(x) = -\frac{3\sqrt{3}}{2}$$

[7 points]

3.

Let $f(x) = \arcsin(x) + \arccos(x)$.

- (a) State the domain of f(x).
- (b) Calculate $f(\frac{1}{2})$.
- (c) With reference to the graphs of $\arcsin(x)$ and $\arccos(x)$, or otherwise, explain why $0 < f(x) < \pi$.
- (d) By simplifying the expression for sin(f(x)), or otherwise, sketch the graph of f(x).

4. [4 points] Given that $\sec \alpha = -\frac{3}{2}$ and $\cot \beta = \frac{1}{2}$ with $0 < \alpha < \pi < \beta < 2\pi$, find the exact value of $\cos(\alpha + \beta)$.