Composition and inverse [74 marks]

1. [Maximum mark: 5]

SPM.1.SL.TZ0.5

The functions f and g are defined such that $f\left(x\right)=\frac{x+3}{4}$ and $g\left(x\right)=8x+5$.

- (a) Show that $(g\circ f)(x)=2x+11$. [2]
- (b) Given that $(g \circ f)^{-1}(a) = 4$, find the value of a. [3]
- **2.** [Maximum mark: 5]

23N.1.AHL.TZ1.1

Consider the functions f(x)=x-3 and $g(x)=x^2+k^2$, where k is a real constant.

- (a) Write down an expression for $(g \circ f)(x)$. [2]
- (b) Given that $(g\circ f)(2)=10$, find the possible values of k. [3]
- **3.** [Maximum mark: 6]

EXN.1.SL.TZ0.5

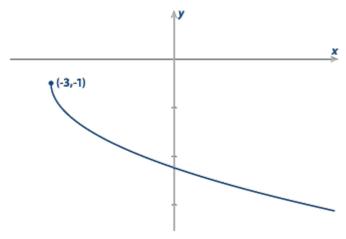
The functions f and g are defined for $x\in\mathbb{R}$ by f(x)=x-2 and g(x)=ax+b , where $a,\,b\in\mathbb{R}$.

Given that $(f\circ g)(2)=-3$ and $(g\circ f)(1)=5$, find the value of a and the value of b.

4. [Maximum mark: 14]

EXN.1.SL.TZ0.8

The following diagram shows the graph of $y=-1-\sqrt{x+3}$ for $x\geq -3$.



(a) Describe a sequence of transformations that transforms the graph of $y=\sqrt{x}$ for $x\geq 0$ to the graph of $y=-1-\sqrt{x+3}$ for $x\geq -3$.

A function f is defined by $f(x) = -1 - \sqrt{x+3}$ for $x \geq -3$.

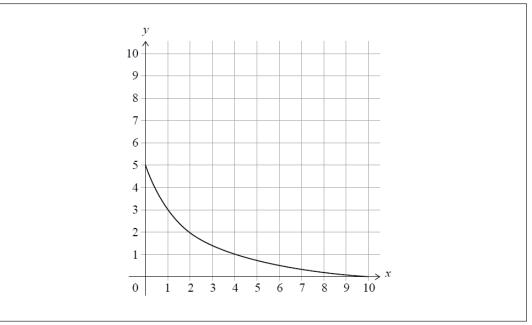
- (b) State the range of f. [1]
- (c) Find an expression for $f^{-1}(x)$, stating its domain. [5]
- (d) Find the coordinates of the point(s) where the graphs of y=f(x) and $y=f^{-1}(x)$ intersect. [5]

5. [Maximum mark: 5]

24M.1.SL.TZ2.1

The graph of y=f(x) for $0\leq x\leq 10$ is shown in the following diagram.

The graph intercepts the axes at $(10,\ 0)$ and $(0,\ 5)$.



(a) Write down the value of

(a.i)
$$f(4)$$
;

(a.ii)
$$f\circ f(4);$$

(a.iii)
$$f^{-1}(3)$$
.

- (b) On the axes above, sketch the graph of $y=f^{-1}(x)$. Show clearly where the graph intercepts the axes. $\cite{2}$
- 6. [Maximum mark: 7] 23M.1.AHL.TZ1.1 The function f is defined by $f(x)=rac{7x+7}{2x-4}$ for $x\in\mathbb{R}, x
 eq 2$.

(a) Find the zero of
$$f(x)$$
. [2]

(b) For the graph of y=f(x) , write down the equation of

(b.ii) the horizontal asymptote. [1]

(c) Find
$$f^{-1}(x)$$
 , the inverse function of $f(x)$.

[3]

7. [Maximum mark: 7]

23M.1.AHL.TZ2.5

The functions f and g are defined for $x \in \mathbb{R}$ by

$$f(x) = ax + b$$
, where $a,b \in \mathbb{Z}$

$$g(x) = x^2 + x + 3.$$

Find the two possible functions \boldsymbol{f} such that

$$(g \circ f)(x) = 4x^2 - 14x + 15.$$

[7]

8. [Maximum mark: 5]

22M.1.SL.TZ2.1

The following table shows values of f(x) and g(x) for different values of x.

Both f and g are one-to-one functions.

x	-2	0	3	4
f(x)	8	4	0	-3
g (x)	-5	-2	4	0

(a) Find
$$g(0)$$
. [1]

(b) Find
$$(f \circ g)(0)$$
. [2]

(c) Find the value of
$$x$$
 such that $f(x)=0$. [2]

9. [Maximum mark: 20]

A function f is defined by $f(x)=rac{1}{x^2-2x-3}$, where $x\in\mathbb{R},\ x
eq -1,\ x
eq 3.$

(a) Sketch the curve y=f(x), clearly indicating any asymptotes with their equations. State the coordinates of any local maximum or minimum points and any points of intersection with the coordinate axes.

[6]

A function g is defined by $g(x)=rac{1}{x^2-2x-3}$, where $x\in\mathbb{R},\;x>3$.

The inverse of g is g^{-1} .

(b.i) Show that
$$g^{-1}(x)=1+rac{\sqrt{4x^2+x}}{x}$$
. [6]

(b.ii) State the domain of
$$g^{-1}$$
. [1]

A function h is defined by $h(x)=rctanrac{x}{2}$, where $x\in\mathbb{R}.$

Given that
$$(h\circ g)(a)=rac{\pi}{4}$$
 , find the value of a . Give your answer in the form $p+rac{q}{2}\sqrt{r}$, where $p,\ q,\ r\in\mathbb{Z}^+$.

© International Baccalaureate Organization, 2024