Coupled differential equations [86 marks]

1. [Maximum mark: 5]

22N.1.AHL.TZ0.12

Four possible phase portraits for the coupled differential equations $rac{\mathrm{d}x}{\mathrm{d}t} = ax + by$ and $rac{\mathrm{d}y}{\mathrm{d}t} = cx + dy$ are shown, labelled $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D .

(a) Complete the following table by writing down the letter of the phase portrait that best matches the description.

(b) On the following axes, sketch the phase portrait that corresponds to $\lambda_1 = -2 + 3i$ and $\lambda_2 = -2 - 3i$, given that $\frac{dy}{dt} = -12$ at (3, 0).

2. [Maximum mark: 6] 24M.1.AHL.TZ1.15 A system of differential equations of the form $\frac{dx}{dt} = ax + by, \quad \frac{dy}{dt} = cx + dy$ has eigenvalues $\lambda = -1$ and $\lambda = 2$ with corresponding eigenvectors $\begin{pmatrix} 3\\1 \end{pmatrix}$ and $\begin{pmatrix} 1\\3 \end{pmatrix}$.

The following incomplete phase portrait for this system, with $x, y \ge 0$, shows lines through (0, 0) parallel to the eigenvectors.

(a) On the phase portrait

[2]

(a.i) show the direction of motion along the eigenvectors.

(a.ii) sketch one trajectory in each of the three regions.

In the system described above, x and y are the population sizes of two species, X and Y. The population of Y is vulnerable, so it will be increased by adding more animals from a different area. Currently, x = 252 and y = 60.

(b) Find the minimum number of new animals from species \boldsymbol{Y} that need to be added for the population not to reduce to $\boldsymbol{0}$ over time.

3. [Maximum mark: 15] 23M.2.AHL.TZ1.6 A model speedboat has its position, at time t seconds $t \geq 0$, defined by

$$rac{\mathrm{d}x}{\mathrm{d}t} = 5y - 0.05x, \; rac{\mathrm{d}y}{\mathrm{d}t} = -5x - 0.05y,$$

[2]

[3]

[1]

where x metres is the distance east and y metres is the distance north of a fixed point \mathbf{O} .

(a)	Find the eigenvalues of $oldsymbol{A}=egin{pmatrix} -0.05 & 5 \ -5 & -0.05 \end{pmatrix}$, giving	
	your answers in the form $a+b{ m i}$, where $a eq 0$, $b eq 0$.	[4]
(b.i)	State what $a eq 0$ indicates about the path of the speedboat.	[1]
(b.ii)	State what the sign of a indicates about the path of the speedboat.	[1]
Attim	e $t=0$, the speedboat has position $(20,\;0)$.	
(c)	At time $t=0$, find the value of	
(c.i)	$\frac{\mathrm{d}y}{\mathrm{d}t}$.	[2]
(c.ii)	$\frac{\mathrm{d}y}{\mathrm{d}x}$.	[3]
(d)	Use your answers to parts (b) and (c) to sketch the path of the model speedboat.	[4]

4. [Maximum mark: 6] SPM.1.AHL.TZ0.13 The rates of change of the area covered by two types of fungi, X and Y, on a particular tree are given by the following equations, where x is the area covered by X and y is the area covered by Y.

$$rac{\mathrm{d}x}{\mathrm{d}t} = 3x - 2y$$
 $rac{\mathrm{d}y}{\mathrm{d}t} = 2x - 2y$

The matrix $\begin{pmatrix} 3 & -2 \\ 2 & -2 \end{pmatrix}$ has eigenvalues of 2 and -1 with corresponding eigenvectors $\begin{pmatrix} 2 \\ 1 \end{pmatrix}$ and $\begin{pmatrix} 1 \\ 2 \end{pmatrix}$.

Initially $x = 8 \text{ cm}^2$ and $y = 10 \text{ cm}^2$.

$$^{(a)}$$
 Find the value of $rac{\mathrm{d} y}{\mathrm{d} x}$ when $t=0.$

(b) On the following axes, sketch a possible trajectory for the growth of the two fungi, making clear any asymptotic behaviour.

5. [Maximum mark: 19]

EXN.2.AHL.TZ0.5

A change in grazing habits has resulted in two species of herbivore, X and Y, competing for food on the same grasslands. At time t = 0 environmentalists begin to record the sizes of both populations. Let the size of the population of X be x, and the size of the population Y be y. The following model is proposed for predicting the change in the sizes of the two populations:

$$\dot{x} = 0.\,3x - 0.\,1y$$

$$\dot{y} = -0.\,2x + 0.\,4y$$

for $x, \; y > 0$

For this system of coupled differential equations find

[4]

(a.i)	the eigenvalues.	[3]
(a.ii)	the eigenvectors.	[3]
(b)	Hence write down the general solution of the system of equations.	[1]
(c)	Sketch the phase portrait for this system, for $x,\ y>0.$	
	On your sketch show	
	 the equation of the line defined by the eigenvector in the first quadrant 	
	• at least two trajectories either side of this line using arrows	;
	on those trajectories to represent the change in	[2]
	populations as i increases	[3]
When	$t=0\mathrm{X}$ has a population of $2000.$	
(d)	Write down a condition on the size of the initial population of \boldsymbol{Y} if it is to avoid its population reducing to zero.	[1]
lt is kr	nown that ${ m Y}$ has an initial population of $2900.$	
(e.i)	Find the value of t at which $x=0.$	[6]
(e.ii)	Find the population of ${ m Y}$ at this value of t . Give your answer to the nearest 10 herbivores.	[2]
[Maxi Consi	mum mark: 18] der the system of paired differential equations	EXM.2.AHL.TZ0.1
$\dot{x} =$	3x+2y	
$\dot{y} =$	2x+3y.	

6.

This represents the populations of two species of symbiotic toadstools in a large wood.

Time t is measured in decades.

(a)	Use the eigenvalue method to find the general solution to this system of equations.	[10]
(b.i)	Given the initial conditions that when $t=0, x=150$, $y=50$, find the particular solution.	[3]
(b.ii)	Hence find the solution when $t=1.$	[1]
(c)	As $t o\infty$, find an asymptote to the trajectory of the particular solution found in (b)(i) and state if this trajectory will be moving towards or away from the origin.	[4]

7.	[Maximum mark: 17]	21M.2.AHL.TZ2.7
	Consider the following system of coupled differential equations.	

$$\frac{\mathrm{d}x}{\mathrm{d}t} = -4x$$

$$\frac{\mathrm{d}y}{\mathrm{d}t} = 3x - 2y$$

(a)	Find the eigenvalues and corresponding eigenvectors of the	
	matrix $\begin{pmatrix} -4 & 0 \\ 3 & -2 \end{pmatrix}$.	[6]
(b)	Hence, write down the general solution of the system.	[2]

(c)	Determine, with justification, whether the equilibrium point	
	$(0,\ 0)$ is stable or unstable.	[2]

Find the value of
$$\frac{\mathrm{d}y}{\mathrm{d}x}$$

(d) (i) at
$$(4, 0)$$
.

[3]
[

(e) Sketch a phase portrait for the general solution to the system of coupled differential equations for $-6 \le x \le 6$, $-6 \le y \le 6$. [4]

© International Baccalaureate Organization, 2024