Sequences [119 marks]

1. [Maximum mark: 5]

24M.1.AHL.TZ1.5

[1]

Consider a geometric sequence with first term 1 and common ratio 10.

 S_n is the sum of the first n terms of the sequence.

(a) Find an expression for S_n in the form $\frac{a^n-1}{b}$, where $a,\ b\in\mathbb{Z}^+.$

Markscheme

$$S_n=rac{10^n-1}{9}$$
 At

$$(a = 10, b = 9)$$

[1 mark]

(b) Hence, show that

$$S_1 + S_2 + S_3 + \ldots + S_n = \frac{10(10^n - 1) - 9n}{81}.$$
 [4]

Markscheme

METHOD 1

$$S_1 + S_2 + S_3 + \ldots + S_n$$

$$= \frac{10-1}{9} + \frac{10^2-1}{9} + \ldots + \frac{10^n-1}{9} \qquad \text{(A1)}$$

$$= \frac{10-1+10^2-1+10^3-1+\ldots+10^n-1}{9} \quad \text{OR}$$

$$\frac{9(10-1+10^2-1+10^3-1+\ldots+10^n-1)}{81}$$

attempt to use geometric series formula on powers of 10, and collect -1's together $\emph{M1}$

$$\begin{array}{l} 10+10^2+10^3+\ldots+10^n=\frac{10(10^n-1)}{10-1} \ \ {\rm and} \\ -1-1-1\ldots=-n \quad \ \ \emph{A1} \\ \\ =\frac{\frac{10(10^n-1)}{10-1}-n}{9} \ \ {\rm OR} \ \ \frac{9\left(\frac{10(10^n-1)}{10-1}\right)-9n}{81} \quad \ \ \emph{A1} \end{array}$$

Note: Award A1 for any correct intermediate expression.

$$=rac{10(10^n-1)-9n}{81}$$
 AG

METHOD 2

attempt to create sum using sigma notation with S_n $\hspace{1cm}$ M1

$$\begin{array}{ll} \sum\limits_{i=1}^{n} \frac{10^{i}-1}{9} & \left(=\frac{1}{9}\left(\sum\limits_{i=1}^{n} 10^{i} - \sum\limits_{i=1}^{n} 1\right)\right) \\ \sum\limits_{i=1}^{n} 10^{i} = \frac{10(10^{n}-1)}{9} \quad \text{A1} \\ \\ \sum\limits_{i=1}^{n} 1 = n \quad \text{A1} \\ & = \frac{1}{9}\left(\frac{10(10^{n}-1)}{9} - n\right) \text{ OR } \frac{1}{9}\left(\frac{10(10^{n}-1)-9n}{9}\right) \quad \text{A1} \\ & = \frac{10(10^{n}-1)-9n}{81} \quad \text{AG} \end{array}$$

METHOD 3

let $\mathrm{P}(n)$ be the proposition that

$$S_1 + S_2 + S_3 + \ldots + S_n = \frac{10(10^n - 1) - 9n}{81}$$

considering P(1):

$$ext{LHS} = S_1 = rac{10^1 - 1}{9} = 1 \; ext{and} \; ext{RHS} = rac{10 \left(10^1 - 1\right) - 9(1)}{81} = 1 \; ext{and} \; ext{so} \; ext{P}(1) \; ext{is true} \qquad ext{\it R1}$$

assume
$$\mathrm{P}(k)$$
 is true *i.e.* $S_1+S_2+S_3+\ldots+S_k=rac{10(10^k-1)-9k}{81}$

Note: Do not award $\it M1$ for statements such as "let n=k" or "n=k is true". Subsequent marks after this $\it M1$ are independent of this mark and can be awarded.

considering P(k+1):

$$S_1+S_2+S_3+\ldots+S_{k+1}=rac{10\left(10^k-1
ight)-9k}{81}+rac{10^{k+1}-1}{9}$$

$$=rac{10^{k+1}-10-9k+9\left(10^{k+1}
ight)-9}{81}$$
 A1
$$=rac{10\left(10^{k+1}-1
ight)-9(k+1)}{81}$$

 $\mathrm{P}(k+1)$ is true whenever $\mathrm{P}(k)$ is true and $\mathrm{P}(1)$ is true, so $\mathrm{P}(n)$ is true $\it R1$

(for all integers $n \geq 1$)

Note: To obtain the final *R1*, the first *R1* and *A1* must have been awarded.

[4 marks]

Consider the arithmetic sequence $a,\;p,\;q\ldots$, where $a,\;p,\;q
eq 0$.

(a) Show that
$$2p - q = a$$
.

[2]

Markscheme

attempt to find a difference (M1)

$$d=p-a, 2d=q-a, d=q-p$$
 OR $p=a+d, q=a+2d, q=p+d$

correct equation A1

$$p-a=q-p$$
 OR $q-a=2(p-a)$ OR $p=rac{a+q}{2}$ (or equivalent)

$$2p-q=a$$
 AG

[2 marks]

Consider the geometric sequence $a,\ s,\ t\dots$, where $a,\ s,\ t
eq 0$.

(b) Show that $s^2 = at$.

[2]

Markscheme

attempt to find a ratio (M1)

$$r=rac{s}{a},\; r^2=rac{t}{a},\; r=rac{t}{s}$$
 OR $s=ar, t=ar^2, t=sr$

correct equation A1

$$\left(\frac{s}{a}\right)^2 = \frac{t}{a}$$
 OR $\frac{s}{a} = \frac{t}{s}$ (or equivalent)

$$s^2=at$$
 AG

[2 marks]

The first term of both sequences is a.

It is given that q=t=1.

(c) Show that $p>\frac{1}{2}$.

[2]

Markscheme

EITHER

$$2p-1=s^2$$
 (or equivalent) $\hspace{0.2in}$ $\hspace{0.2in}$ $\hspace{0.2in}$ $\hspace{0.2in}$

$$\left(s^2>0
ight)\Rightarrow 2p-1>0$$
 OR $s=\sqrt{2p-1}\Rightarrow 2p-1>0$ OR $p=rac{s^2+1}{2}$ (and $s^2>0$) R1

OR

$$2p-1=a$$
 and $s^2=a$ A1 $(s^2>0,{
m so})\,a>0\Rightarrow 2p-1>0\,\,{
m OR}\,\,prac{a+1}{2}$ and $a>0$ R1 $\Rightarrow p>rac{1}{2}$ AG

Note: Do not award *A0R1*.

[2 marks]

Consider the case where $a=9,\ s>0$ and q=t=1.

(d) Write down the first four terms of the

(d.i) arithmetic sequence;

[2]

Markscheme

$$9, 5, 1, -3$$
 A1A1

Note: Award *A1* for each of 2nd term and 4th term

[2 marks]

(d.ii) geometric sequence.

[2]

Markscheme

$$9, 3, 1, \frac{1}{3}$$
 A1A1

Note: Award *A1* for each of 2nd term and 4th term

[2 marks]

The arithmetic and the geometric sequence are used to form a new arithmetic sequence u_n .

The first three terms of u_n are $u_1=9+\ln 9,\; u_2=5+\ln 3,$ and $u_3=1+\ln 1.$

(e.i) Find the common difference of the new sequence in terms of $ln\ 3. \\$

[3]

Markscheme

attempt to find the difference between two consecutive terms (M1)

$$d=u_2-u_1=5+\ln 3-9-\ln 9$$
 OR $d=u_3-u_2=1+\ln 1-5-\ln 3$

$$\ln 9=2\ln 3$$
 OR $\ln 1=0$ OR $\ln 3-\ln 9=\ln \frac{1}{3}\left(=\ln 3^{-1}=-\ln 3\right)$ (seen anywhere) (A1) $d=-4-\ln 3$ A1

[3 marks]

(e.ii) Show that
$$\sum_{i=1}^{10} = -90 - 25 \ln 3$$
.

[3]

Markscheme

METHOD 1

attempt to substitute first term and their common difference into S_{10} (M1)

$$\begin{array}{l} \frac{10}{2}(2(9+\ln 9)+9(-4-\ln 3)) \;\; \text{OR} \\ \frac{10}{2}(2(9+2\ln 3)+9(-4-\ln 3)) \;\; \text{(or equivalent)} & \textit{A1} \\ =5(-18-5\ln 3) \;\; \text{(or equivalent in terms of } \ln 3) & \textit{A1} \end{array}$$

$$\sum\limits_{i=1}^{10} u_i = -90 - 25 \ln 3$$
 AG

METHOD 2

$$u_{10} = 9 + \ln 9 + 9(-4 - \ln 3)(= -27 + \ln 9 - 9 \ln 3)$$

attempt to substitute first term and their u_{10} into S_{10} (M1)

$$rac{10}{2}(2(9+\ln 9)+9(-4-\ln 3))$$
 OR $rac{10}{2}(9+\ln 9-27+\ln 9-9\ln 3)$ OR

$$rac{10}{2}(2(9+2\ln 3)+9(-4-\ln 3))$$
 OR $rac{10}{2}(9+\ln 9-27-7\ln 3)$ (or equivalent)

$$\sum\limits_{i=1}^{10} u_i = -90-25 \ln 3$$
 as

[3 marks]

3. [Maximum mark: 7]

23N.1.SL.TZ1.4

The sum of the first n terms of an arithmetic sequence is given by $S_n \,= pn^2 - qn$, where p and q are positive constants.

It is given that $\mathrm{S}_5=65$ and $S_6=96$.

(a) Find the value of p and the value of q.

[5]

Markscheme

METHOD 1

attempt to form at least one equation, using either S_5 or S_6 (M1)

$$65 = 25p - 5q \ (13 = 5p - q) \ ext{and} \ 96 = 36p - 6q \ (16 = 6p - q)$$
 (A1)

valid attempt to solve simultaneous linear equations in p and q and by substituting or eliminating one of the variables. (M1)

$$p=3$$
 , $q=2$

Note: If candidate does not explicitly state their values of $\it p$ and $\it q$, but gives $S_n=3n^2-2n$, award final two marks as **A1A0**.

METHOD 2

attempt to form at least one equation, using either S_5 or S_6 (M1)

$$65=rac{5}{2}(2u_1+4d)\ (26=2u_1+4d)$$
 and $96=3(2u_1+5d)\ (32=2u_1+5d)$ (A1)

valid attempt to solve simultaneous linear equations in u_1 and d by substituting or eliminating one of the variables. (M1)

$$u_1 = 1, d = 6$$

$$S_n = \frac{n}{2}(2 + 6(n-1)) = 3n^2 - 2n$$

$$p=3$$
 and $q=2$

Note: If candidate does not explicitly state their values of p and q, do not award the final mark.

[5 marks]

(b) Find the value of u_6 .

Markscheme

$$u_6 = S_6 - S_5$$
 OR substituting their values of u_1 and d into $u_6 = u_1 \, + \, 5d$

OR substituting their value of u_1 into $96 = \frac{6}{2}(u_1 + u_6)$ (M1)

$$(u_6=)96-65$$
 OR $(u_6=)1+5 imes 6$ OR $96=3(1+u_6)$

$$=31$$
 A1

[2 marks]

[2]

4. [Maximum mark: 14]

23M.1.AHL.TZ1.10

Consider the arithmetic sequence u_1, u_2, u_3, \dots

The sum of the first n terms of this sequence is given by $S_n=n^2+4n$.

(a.i) Find the sum of the first five terms.

[2]

Markscheme

recognition that n=5 (M1)

$$S_5=45$$
 A1

[2 marks]

(a.ii) Given that $S_6=60$, find u_6 .

[2]

Markscheme

METHOD 1

recognition that $S_5+u_6=S_6$ (M1)

$$u_6=15$$
 A

METHOD 2

recognition that $60=rac{6}{2}ig(S_1+u_6ig)$ (M1),

$$60 = 3(5 + u_6)$$

$$u_6=15$$
 A1

METHOD 3

substituting their u_1 and d values into $u_1+(n-1)d$ $\hspace{0.5cm}$ (M1)

$$u_6=15$$
 A1

[2 marks]

(b) Find u_1 .

[2]

Markscheme

recognition that $u_1=S_1$ (may be seen in (a)) OR substituting their u_6 into S_6 (M1)

OR equations for S_5 and S_6 in terms of u_1 and d

$$1+4$$
 OR $60=rac{6}{2}ig(U_1+15ig)$

$$u_1=5$$
 A1

[2 marks]

(c) Hence or otherwise, write an expression for u_n in terms of n.

[3]

Markscheme

EITHER

valid attempt to find d (may be seen in (a) or (b)) (M1)

$$d=2$$
 (A1)

OR

valid attempt to find S_n-S_{n-1} (M1)

$$n^2 + 4n - \left(n^2 - 2n + 1 + 4n - 4\right)$$
 (A1)

OR

equating
$$n^2+4n=rac{n}{2}ig(5+u_nig)$$
 (M1)

$$2n+8=5+u_n$$
 (or equivalent) (A1)

THEN

$$u_n=5+2(n-1)$$
 or $u_n=2n+3$

[3 marks]

Consider a geometric sequence, v_n , where $v_2=u_1$ and $v_4=u_6$.

(d) Find the possible values of the common ratio, r.

Markscheme

recognition that $v_2 r^2 = v_4 \,\, {
m OR} \, \left(v_3
ight)^2 = v_2 imes v_4 \,\,\,\,\,\,\,$ (M1)

$$r^2=3$$
 or $v_3=\left(\pm
ight)5\sqrt{3}$ (A1)

$$r=\pm\sqrt{3}$$
 A1

Note: If no working shown, award *M1A1A0* for $\sqrt{3}$.

[3]

[3 marks]

(e) Given that $v_{99} < 0$, find v_5 .

[2]

Markscheme

recognition that r is negative (M1)

$$v_5=-15\sqrt{3}~\left(=-rac{45}{\sqrt{3}}
ight)$$
 at

[2 marks]

[Maximum mark: 18] 22M.1.AHL.TZ1.10 Consider the series $\ln x+p\ln x+\frac{1}{3}\ln x+\ldots$, where $x\in\mathbb{R},\ x>1$ and $p\in\mathbb{R},\ p\neq 0$.

Consider the case where the series is geometric.

(a.i) Show that
$$p=\pm rac{1}{\sqrt{3}}$$
. [2]

Markscheme

EITHER

attempt to use a ratio from consecutive terms M1

$$rac{p \ln x}{\ln x} = rac{rac{1}{3} \ln x}{p \ln x}$$
 or $rac{1}{3} \ln x = (\ln x) r^2$ or $p \ln x = \ln x \Big(rac{1}{3p}\Big)$

Note: Candidates may use $\ln x^1 + \ln x^p + \ln x^{\frac{1}{3}} + \ldots$ and consider the powers of x in geometric sequence

Award *M1* for $\frac{p}{1} = \frac{\frac{1}{3}}{p}$.

OR

$$r=p$$
 and $r^2=rac{1}{3}$ $\it M1$

THEN

$$p^2=rac{1}{3}$$
 or $r=\pmrac{1}{\sqrt{3}}$ at

$$p=\pmrac{1}{\sqrt{3}}$$
 AG

Note: Award **M0A0** for $r^2=\frac{1}{3}$ or $p^2=\frac{1}{3}$ with no other working seen.

[1]

[2 marks]

(a.ii) Hence or otherwise, show that the series is convergent.

Markscheme

EITHER

since,
$$|p|=rac{1}{\sqrt{3}}$$
 and $rac{1}{\sqrt{3}}<1$

OR

since,
$$|p| = rac{1}{\sqrt{3}}$$
 and -1

THEN

 \Rightarrow the geometric series converges. **AG**

Note: Accept r instead of p.

Award $\emph{R0}$ if both values of p not considered.

[1 mark]

(a.iii) Given that
$$p>0$$
 and $S_{\infty}=3+\sqrt{3}$, find the value of x .

[3]

Markscheme

$$rac{\ln x}{1-rac{1}{\sqrt{3}}} \ \left(=3+\sqrt{3}
ight)$$
 (A1)

$$\ln x=3-rac{3}{\sqrt{3}}+\sqrt{3}-rac{\sqrt{3}}{\sqrt{3}}$$
 or $\ln x=3-\sqrt{3}+\sqrt{3}-1~(\Rightarrow \ln x=2)$

$$x=\mathrm{e}^2$$
 A1

[3 marks]

Now consider the case where the series is arithmetic with common difference d.

(b.i) Show that
$$p=rac{2}{3}$$
. [3]

Markscheme

METHOD 1

correct equation A1

$$p \ln x - \ln x = \frac{1}{3} \ln x - p \ln x$$
 OR $\frac{1}{3} \ln x = \ln x + 2(p \ln x - \ln x)$

Note: Candidates may use $\ln x^1 + \ln x^p + \ln x^{\frac{1}{3}} + \ldots$ and consider the powers of x in arithmetic sequence.

Award **M1A1** for
$$p-1=rac{1}{3}-p$$

$$2p\ln x = rac{4}{3} \ln x \ \left(\Rightarrow 2p = rac{4}{3}
ight)$$
 at $p = rac{2}{3}$ ag

METHOD 2

attempt to use arithmetic mean $u_2=rac{u_1+u_3}{2}$

$$p \ln x = rac{\ln x + rac{1}{3} \ln x}{2}$$
 A1

$$2p \ln x = rac{4}{3} {\ln x} \; \left(\Rightarrow 2p = rac{4}{3}
ight)$$
 . At

$$p=rac{2}{3}$$
 AG

METHOD 3

attempt to find difference using u_3

$$\frac{1}{3}\ln x = \ln x + 2d \ \left(\Rightarrow d = -\frac{1}{3}\ln x\right)$$

$$u_2=\ln\,x+rac{1}{2}ig(rac{1}{3}\ln\,x-\ln\,xig)$$
 OR $p\ln\,x-\ln\,x=-rac{1}{3}\ln\,x$

$$p \ln x = \frac{2}{3} \ln x$$
 A1

$$p=rac{2}{3}$$
 AG

[3 marks]

(b.ii) Write down d in the form $k \ln x$, where $k \in \mathbb{Q}$.

[1]

Markscheme

$$d=-rac{1}{3} {
m ln} \ x$$
 A1

[1 mark]

(b.iii) The sum of the first n terms of the series is $\ln \left(\frac{1}{x^3} \right)$.

Find the value of n.

[8]

Markscheme

METHOD 1

$$S_n = \frac{n}{2} \left[2 \ln x + (n-1) \times \left(-\frac{1}{3} \ln x \right) \right]$$

attempt to substitute into S_n and equate to $\ln \left(\frac{1}{x^3} \right)$ (M1)

$$rac{n}{2} \left[2 \ln x + (n-1) imes \left(-rac{1}{3} \ln x
ight)
ight] = \ln \left(rac{1}{x^3}
ight)$$

$$\ln\left(\frac{1}{x^3}\right) = -\ln x^3 \left(=\ln x^{-3}\right) \tag{A1}$$

$$=-3 \ln x$$
 (A1)

correct working with S_n (seen anywhere) (A1)

$$rac{n}{2}\left\lfloor 2\ln x - rac{n}{3}\ln x + rac{1}{3}\ln x
ight
floor$$
 or $n\ln x - rac{n(n-1)}{6}\ln x$ or $rac{n}{2}\left(\ln x + \left(rac{4-n}{3}
ight)\ln x
ight)$

correct equation without $\ln x$

$$rac{n}{2}\left(rac{7}{3}-rac{n}{3}
ight)=-3$$
 OR $n-rac{n(n-1)}{6}=-3$ or equivalent

Note: Award as above if the series $1+p+\frac{1}{3}+\ldots$ is considered leading to $\frac{n}{2}\left(\frac{7}{3}-\frac{n}{3}\right)=-3$.

attempt to form a quadratic = 0 (M1)

$$n^2 - 7n - 18 = 0$$

attempt to solve their quadratic (M1)

$$(n-9)(n+2) = 0$$

$$n=9$$
 A1

METHOD 2

$$\ln\left(\frac{1}{x^3}\right) = -\ln x^3 \left(=\ln x^{-3}\right)$$
 (A1)
$$= -3\ln x$$
 (A1)

listing the first 7 terms of the sequence (A1)

$$\ln x + \tfrac{2}{3} \ln x + \tfrac{1}{3} \ln x + 0 - \tfrac{1}{3} \ln x - \tfrac{2}{3} \ln x - \ln x + \dots$$
 recognizing first 7 terms sum to 0

$$8^{ ext{th}} \operatorname{term is} - \frac{4}{3} \ln x$$
 (A1)

$$9^{ ext{th}} \operatorname{term}$$
 is $-\frac{5}{3} \ln x$ (A1)

sum of
$$8^{\rm th}$$
 and $9^{\rm th}$ term $=-3\,\ln\,x$ (A1)

$$n=9$$
 A1

[8 marks]

6. [Maximum mark: 15]

21N.1.SL.TZ0.8

Consider the function $f(x)=a^x$ where $x,\ a\in\mathbb{R}$ and $x>0,\ a>1.$

The graph of f contains the point $\left(\frac{2}{3},\,4\right)$.

(a) Show that a = 8.

[2]

Markscheme

$$fig(rac{2}{3}ig)=4$$
 OR $a^{rac{2}{3}}=4$ (M1)

$$a=4^{rac{3}{2}}$$
 or $a=\left(2^2
ight)^{rac{3}{2}}$ or $a^2=64$ or $\sqrt[3]{a}=2$

$$a=8$$
 AG

[2 marks]

(b) Write down an expression for $f^{-1}(x)$.

[1]

Markscheme

$$f^{-1}(x) = \log_8 x \qquad \quad \textbf{A1}$$

Note: Accept $f^{-1}(x) = \log_a x$.

Accept any equivalent expression for f^{-1} e.g. $f^{-1}(x) = \frac{\ln x}{\ln 8}$.

[1 mark]

(c) Find the value of
$$f^{-1}\Big(\sqrt{32}\Big)$$
. [3]

Markscheme

correct substitution

$$\log_8 \sqrt{32}$$
 or $8^x = 32^{rac{1}{2}}$

correct working involving log/index law (A1)

(A1)

$$rac{1}{2}\mathrm{log_8}~32$$
 or $rac{5}{2}\mathrm{log_8}~2$ or $\mathrm{log_8}~2=rac{1}{3}$ or $\mathrm{log_2}~2^{rac{5}{2}}$ or $\mathrm{log_2}~8=3$ or $rac{\ln 2^{rac{5}{2}}}{\ln 2^3}$ or $2^{3x}=2^{rac{5}{2}}$

$$f^{-1}\Bigl(\sqrt{32}\Bigr)=rac{5}{6}$$
 At

[3 marks]

Consider the arithmetic sequence

 $\log_8\,27\;,\;\log_8\,p\;,\;\log_8\,q\;,\;\log_8\,125\;,$ where p>1 and q>1.

(d.i) Show that $27,\;p,\;q$ and 125 are four consecutive terms in a geometric sequence.

[4]

METHOD 1

equating a pair of differences (M1)

$$u_2 - u_1 = u_4 - u_3 (= u_3 - u_2)$$

$$\log_8 p - \log_8 27 = \log_8 125 - \log_8 q$$

$$\log_8 125 - \log_8 q = \log_8 q - \log_8 p$$

$$\log_8\!\left(rac{p}{27}
ight) = \log_8\!\left(rac{125}{q}
ight), \ \log_8\!\left(rac{125}{q}
ight) = \log_8\!\left(rac{q}{p}
ight)$$
 A1A1

$$\frac{p}{27}=\frac{125}{q}$$
 and $\frac{125}{q}=\frac{q}{p}$

 $27,\;p,\;q$ and 125 are in geometric sequence ${\it AG}$

Note: If candidate assumes the sequence is geometric, award no marks for part (i). If $r=\frac{5}{3}$ has been found, this will be awarded marks in part (ii).

METHOD 2

expressing a pair of consecutive terms, in terms of d (M1)

$$p=8^d imes 27$$
 and $q=8^{2d} imes 27$ OR $\,q=8^{2d} imes 27$ and $\,125=8^{3d} imes 27$

two correct pairs of consecutive terms, in terms of d

$$\frac{8^d \times 27}{27} = \frac{8^{2d} \times 27}{8^d \times 27} = \frac{8^{3d} \times 27}{8^{2d} \times 27}$$
 (must include 3 ratios) **A1**

all simplify to 8^d

 $27,\;p,\;q$ and 125 are in geometric sequence ${\it AG}$

(d.ii) Find the value of p and the value of q.

Markscheme

METHOD 1 (geometric, finding r)

$$u_4=u_1r^3$$
 OR $125=27(r)^3$ (M1) $r=rac{5}{3}$ (seen anywhere) A1 $p=27r$ OR $rac{125}{q}=rac{5}{3}$ (M1) $p=45,\;q=75$ A1A1

METHOD 2 (arithmetic)

$$u_4=u_1+3d$$
 OR $\log_8 125=\log_8 27+3d$ (M1) $d=\log_8\left(rac{5}{3}
ight)$ (seen anywhere) A1 $\log_8 p=\log_8 27+\log_8\left(rac{5}{3}
ight)$ OR $\log_8 q=\log_8 27+2\log_8\left(rac{5}{3}
ight)$ (M1) $p=45,\ q=75$ A1A1

METHOD 3 (geometric using proportion)

recognizing proportion (M1)

$$pq=125 imes27$$
 OR $q^2=125p$ OR $p^2=27q$

[5]

two correct proportion equations

A1

attempt to eliminate either p or q (M1)

$$q^2=125 imes rac{125 imes 27}{q}$$
 OR $p^2=27 imes rac{125 imes 27}{p}$

$$p=45,\;q=75$$
 A1A1

[5 marks]

7. [Maximum mark: 9]

21N.2.SL.TZ0.6

The sum of the first n terms of a geometric sequence is given by

$$S_n = \sum_{r=1}^n \frac{2}{3} \left(\frac{7}{8}\right)^r.$$

(a) Find the first term of the sequence, u_1 .

[2]

Markscheme

$$u_1 = S_1 = rac{2}{3} imes rac{7}{8}$$
 (M1) $= rac{14}{24} ig(= rac{7}{12} = 0.5833333\ldots ig)$ A1

[2 marks]

(b) Find S_{∞} .

[3]

Markscheme

$$r = \frac{7}{8} (= 0.875)$$
 (A1)

substituting their values for u_1 and r into $S_{\infty}=rac{u_1}{1-r}$ (M1)

$$=\frac{14}{3}(=4.66666\ldots)$$
 A1

[3 marks]

(c) Find the least value of n such that $S_{\infty}-S_n<0$. 001 .

[4]

Markscheme

attempt to substitute their values into the inequality or formula for S_n (M1)

$$rac{14}{3} - \sum\limits_{r=1}^n rac{2}{3} {\left(rac{7}{8}
ight)}^r < 0.001 \; ext{or} \; S_n = rac{rac{7}{12} \left(1 - \left(rac{7}{8}
ight)^n
ight)}{\left(1 - rac{7}{8}
ight)}$$

attempt to solve their inequality using a table, graph or logarithms

(must be exponential) (M1)

Note: Award *(M0)* if the candidate attempts to solve $S_{\infty}-u_n < 0.001$.

correct critical value or at least one correct crossover value (A1)

$$63.\,2675\ldots$$
 or $S_\infty-S_{63}=0.\,001036\ldots$ or $S_\infty-S_{64}=0.\,000906\ldots$

or
$$S_{\infty}-S_{63}-0.001=0.0000363683\ldots$$
 or $S_{\infty}-S_{64}-0.001=0.0000931777\ldots$

least value is n=64

[4 marks]

8. [Maximum mark: 5]

21M.1.SL.TZ1.3

Consider an arithmetic sequence where $u_8=S_8=8$. Find the value of the first term, u_1 , and the value of the common difference, d.

[5]

Markscheme

METHOD 1 (finding u_1 first, from S_8)

$$4(u_1+8)=8$$
 (A1)

$$u_1 = -6$$
 A1

attempt to substitute their u_1 (M1)

$$d=2$$
 A1

METHOD 2 (solving simultaneously)

$$u_1 + 7d = 8$$
 (A1)

$$4(u_1+8)=8 \text{ or } 4(2u_1+7d)=8 \text{ or } u_1=-3d$$
 (A1)

attempt to solve linear or simultaneous equations (M1)

$$u_1=-6,\ d=2$$
 ATAT

[5 marks]

9. [Maximum mark: 5]

20N.1.AHL.TZ0.H_5

The first term in an arithmetic sequence is 4 and the fifth term is $\log_2 \, 625$.

[5]

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

$$u_5 = 4 + 4d = \log_2 625$$
 (A1)

$$4d = \log_2 625 - 4$$

attempt to write an integer ($\it eg\,4$ or $\it 1$) in terms of $\it log_2$

$$4d = \log_2 625 - \log_2 16$$

attempt to combine two logs into one M1

$$4d = \log_2\left(\frac{625}{16}\right)$$

$$d = \frac{1}{4}\log_2\left(\frac{625}{16}\right)$$

attempt to use power rule for logs M1

$$d = \log_2 \left(\frac{625}{16}\right)^{\frac{1}{4}}$$

$$d = \log_2\left(\frac{5}{2}\right)$$
 A1

[5 marks]

Note: Award method marks in any order.

An infinite geometric series has first term $u_1=a$ and second term $u_2=rac{1}{4}a^2-3a$, where a>0 .

(a) Find the common ratio in terms of a.

[2]

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

evidence of dividing terms (in any order) (M1)

eg
$$\frac{u_1}{u_2}$$
, $\frac{\frac{1}{4}a^2 - 3a}{a}$

$$r=rac{1}{4}a-3$$
 A1 N2

[2 marks]

(b) Find the values of a for which the sum to infinity of the series exists.

[3]

Markscheme

recognizing |r| < 1 (must be in terms of a) $\,$ (M1)

eg

$$\left| \frac{1}{4}a - 3 \right| < 1, -1 \le \frac{1}{4}a - 3 \le 1, -4 < a - 12 < 4$$

$$8 < a < 16$$
 A2 N3

[3 marks]

(c) Find the value of a when $S_{\infty}=76$.

[3]

Markscheme

correct equation (A1)

eg
$$\frac{a}{1-(\frac{1}{4}a-3)}=76,\; a=76\left(4-\frac{1}{4}a\right)$$

$$a = rac{76}{5} \; (=15.2)$$
 (exact) $\,$ A2 N3 $\,$

[3 marks]

11. [Maximum mark: 5]

19N.2.AHL.TZ0.H_1

A geometric sequence has $u_4=-70$ and $u_7=8.75$. Find the second term of the sequence.

[5]

Markscheme

$$u_1 r^3 = -70$$
, $u_1 r^6 = 8.75$ (M1)

$$r^3=rac{8.75}{-70}=-0.125$$
 (A1)

$$\Rightarrow r = -0.5$$
 (A1)

valid attempt to find u_2 $\ \textit{(M1)}$

for example:
$$u_1=rac{-70}{-0.125}=560$$

$$u_2 = 560 \times -0.5$$

$$=-280$$
 A1

[5 marks]

12. [Maximum mark: 7]

19M.2.SL.TZ1.S 7

The first terms of an infinite geometric sequence, u_n , are 2, 6, 18, 54, ...

The first terms of a second infinite geometric sequence, v_n , are 2, -6, 18, -54, \dots

The terms of a third sequence, w_n , are defined as $w_n=u_n+v_n$.

The finite series, $\sum\limits_{k=1}^{225} w_k$, can also be written in the form $\sum\limits_{k=0}^{m} 4r^k$.

(a) Write down the first three **non-zero** terms of w_n .

[3]

Markscheme

attempt to add corresponding terms (M1)

eg
$$2+2$$
, $6+(-6)$, $2(3)^{n-1}+2(-3)^{n-1}$

correct value for w_5 (A1)

eg 324

4, 36, 324 (accept 4 + 36 + 324) A1 N3

[3 marks]

[2]

(b.i) Find the value of r.

Markscheme

valid approach (M1)

eg
$$4 imes r^1=36$$
, $4 imes 9^{n-1}$

$$r=9$$
 (accept $\sum\limits_{k=0}^{m}4 imes9^{k}$; m may be incorrect) $an 2$

[2 marks]

[2]

(b.ii) Find the value of m.

Markscheme

recognition that 225 terms of w_n consists of 113 non-zero terms (M1)

$$eg \sum_{1}^{113}, \sum_{0}^{112}, 113$$

$$m=112$$
 (accept $\sum\limits_{k=0}^{1}124 imes r^{k}$; r may be incorrect) $an 2$

[2 marks]

13. [Maximum mark: 5]

18N.2.AHL.TZ0.H 1

Consider a geometric sequence with a first term of 4 and a fourth term of -2.916.

(a) Find the common ratio of this sequence.

[3]

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

$$u_4 = u_1 r^3 \Rightarrow -2.916 = 4 r^3$$
 (A1)

solving,
$$r=-0.9$$
 (M1)A1

[3 marks]

(b) Find the sum to infinity of this sequence.

[2]

Markscheme

$$S_{\infty}=rac{4}{1-(-9)}$$
 (M1)

$$=rac{40}{19}\,(=2.11)$$
 A1

[2 marks]

© International Baccalaureate Organization, 2024