Sequences [119 marks]

 ${\boldsymbol{S}}_n$ is the sum of the first n terms of the sequence.

(a) Find an expression for
$$S_n$$
 in the form $rac{a^n-1}{b}$, where $a, \ b \in \mathbb{Z}^+.$ [1]

(b) Hence, show that
$$S_1+S_2+S_3+\ldots+S_n=rac{10(10^n-1)-9n}{81}.$$
 [4]

- 2. [Maximum mark: 16] 24M.1.AHL.TZ2.10 Consider the arithmetic sequence $a, \ p, \ q \dots$, where $a, \ p, \ q \neq 0$.
 - (a) Show that 2p q = a. [2]

Consider the geometric sequence $a,\ s,\ t\ldots,$ where $a,\ s,\ t
eq 0.$

(b) Show that $s^2 = at$. [2]

The first term of both sequences is a.

It is given that q = t = 1.

(c) Show that $p>\frac{1}{2}.$ [2]

Consider the case where $a=9,\ s>0$ and q=t=1.

- (d) Write down the first four terms of the
- (d.i) arithmetic sequence; [2]

(d.ii) geometric sequence.

The arithmetic and the geometric sequence are used to form a new arithmetic sequence u_n .

The first three terms of u_n are $u_1=9+\ln 9,\;u_2=5+\ln 3,$ and $u_3=1+\ln 1.$

(e.i) Find the common difference of the new sequence in terms of $\ln 3$. [3]

(e.ii) Show that
$$\sum_{i=1}^{10} = -90 - 25 \ln 3.$$
 [3]

- 3. [Maximum mark: 7] 23N.1.SL.TZ1.4 The sum of the first n terms of an arithmetic sequence is given by $S_n = pn^2 - qn$, where p and q are positive constants. It is given that $S_5 = 65$ and $S_6 = 96$.
 - (a) Find the value of p and the value of q. [5]
 - (b) Find the value of u_6 . [2]
- **4.** [Maximum mark: 14]23M.1.AHL.TZ1.10Consider the arithmetic sequence u_1, u_2, u_3, \dots

The sum of the first n terms of this sequence is given by $S_n=n^2+4n.$

- (a.i)Find the sum of the first five terms.[2](a.ii)Given that $S_6 = 60$, find u_6 .[2]
- (b) Find u_1 . [2]

(c) Hence or otherwise, write an expression for u_n in terms of n. [3] Consider a geometric sequence, v_n , where $v_2 = u_1$ and $v_4 = u_6$.

(d) Find the possible values of the common ratio,
$$r$$
. [3]

(e) Given that
$$v_{99} < 0$$
, find v_5 . [2]

5. [Maximum mark: 18] 22M.1.AHL.TZ1.10 Consider the series $\ln x + p \ln x + rac{1}{3} \ln x + \ldots$, where $x \in \mathbb{R}, \ x > 1$ and $p \in \mathbb{R}, \ p
eq 0$.

Consider the case where the series is geometric.

(a.i) Show that
$$p=\pm rac{1}{\sqrt{3}}.$$
 [2]

(a.ii) Hence or otherwise, show that the series is convergent. [1]

(a.iii) Given that
$$p>0$$
 and $S_\infty=3+\sqrt{3}$, find the value of $x.$ [3]

Now consider the case where the series is arithmetic with common difference d.

(b.i) Show that
$$p=rac{2}{3}$$
. [3]

(b.ii) Write down d in the form $k \ln x$, where $k \in \mathbb{Q}$. [1]

[8]

- (b.iii) The sum of the first n terms of the series is $\ln(\frac{1}{x^3})$. Find the value of n.
- 6. [Maximum mark: 15] 21N.1.SL.TZ0.8 Consider the function $f(x)=a^x$ where $x,\ a\in\mathbb{R}$ and $x>0,\ a>1.$

The graph of f contains the point $\left(\frac{2}{3}, 4\right)$.

(a) Show that a = 8. [2]

(b) Write down an expression for
$$f^{-1}(x)$$
. [1]

(c) Find the value of
$$f^{-1}\left(\sqrt{32}\right)$$
. [3]

Consider the arithmetic sequence

 $\log_8\,27\ ,\ \log_8 p\ ,\ \log_8 q\ ,\ \log_8\,125\ ,$ where p>1 and q>1.

(d.i)	Show that $27,\ p,\ q$ and 125 are four consecutive terms in a		
	geometric sequence.	[4]	
(d.ii)	Find the value of p and the value of $q.$	[5]	

7. [Maximum mark: 9] 21N.2.SL.TZ0.6 The sum of the first n terms of a geometric sequence is given by $S_n = \sum_{r=1}^n \frac{2}{3} \left(\frac{7}{8}\right)^r$.

(a)	Find the first term of the sequence, $u_1.$	[2]
(a)	Find the first term of the sequence, $u_1.$	[2

(b) Find
$$S_{\infty}$$
. [3]

- (c) Find the least value of n such that $S_\infty S_n < 0.\,001.$ [4]
- 8. [Maximum mark: 5] 21M.1.SL.TZ1.3 Consider an arithmetic sequence where $u_8 = S_8 = 8$. Find the value of the first term, u_1 , and the value of the common difference, d. [5]

9. [Maximum mark: 5]

The first term in an arithmetic sequence is 4 and the fifth term is $\log_2\,625.$

Find the common difference of the sequence, expressing your answer in the form $\log_2 \, p$, where $p \in \mathbb{Q}$.

[5]

10. [Maximum mark: 8] 20N.2.SL.TZ0.S_6 An infinite geometric series has first term $u_1 = a$ and second term $u_2 = \frac{1}{4}a^2 - 3a$, where a > 0.

- (a) Find the common ratio in terms of *a*. [2]
- (b) Find the values of *a* for which the sum to infinity of the series exists. [3]
- (c) Find the value of a when $S_{\infty}=76.$ [3]
- **11.** [Maximum mark: 5]19N.2.AHL.TZ0.H_1A geometric sequence has $u_4 = -70$ and $u_7 = 8.75$. Find the
second term of the sequence.[5]
- **12.** [Maximum mark: 7] $19M.2.SL.TZ1.S_7$ The first terms of an infinite geometric sequence, u_n , are 2, 6, 18, 54, ...

The first terms of a second infinite geometric sequence, v_n , are 2, -6, 18, -54, ...

The terms of a third sequence, w_n , are defined as $w_n = u_n + v_n$.

The finite series,
$$\sum\limits_{k=1}^{225} w_k$$
 , can also be written in the form $\sum\limits_{k=0}^m 4r^k.$

	(a)	Write down the first three non-zero terms of w_n .	[3]
	(b.i)	Find the value of r .	[2]
	(b.ii)	Find the value of m .	[2]
13.	[Maximum mark: 5] 18N.2.AHL.TZC Consider a geometric sequence with a first term of 4 and a fourth term of -2.916 .		
	(a)	Find the common ratio of this sequence.	[3]
	(b)	Find the sum to infinity of this sequence.	[2]

© International Baccalaureate Organization, 2024