Mixed Practice

1 Let
$$f(x) = \frac{2x+1}{(3x-2)(x+2)}$$
.

- **a** State the equation of the vertical asymptotes.
- **b** Find the coordinates of the axis intercepts.
- **c** Sketch the graph of y = f(x).

- 2 Let $f(x) = x 2 \frac{8}{x 4}$.
 - a State the equation of
 - the vertical asymptote
 - the oblique asymptote.
 - **b** Find the coordinates of the axis intercepts.
 - Sketch the graph of y = f(x).

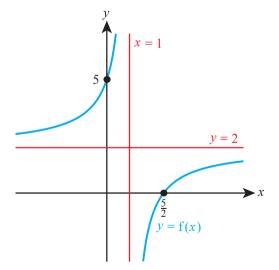
Find the set of values of x for which $6x + x^2 - 2x^3 < 0$.

- **4** a Show that (x + 2) is a factor of $x^3 3x^2 6x + 8$.
 - **b** Hence solve the inequality $x^3 1 \ge 3(x^2 + 2x 3)$.
- 5 Solve the inequality $2x^4 5x^2 + x + 1 < 0$.
- 6 Solve the inequality $\ln x \le e^{\sin x}$ for $0 < x \le 10$.

- **7** a Sketch the graph of $y = |\cos 3x|$ for $0 \le x \le \pi$.
 - **b** Solve $|\cos 3x| = \frac{1}{2}$ for $0 \le x \le \pi$.

- 8 a On the same axes, sketch the graphs of y = |4 + x| and y = |5 3x|, labelling any axis intercepts.
 - **b** Hence solve the inequality $|4 + x| \le |5 3x|$.

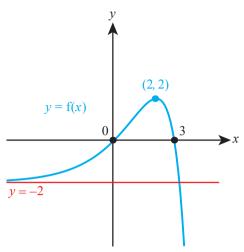
- **9** a On the same axes, sketch the graphs of y = |5x + 1| and y = 3 x, labelling any axis intercepts.
 - **b** Hence solve the inequality 3 x > |5x + 1|.
- 10 The graph of y = f(x) is shown below.



Labelling any axis intercepts and asymptotes, on separate axes sketch the graph of

- a y = |f(x)|
- **b** y = f(|x|).

11 The graph of y = f(x) is shown below.



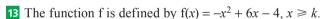
Labelling any x-axis intercepts, turning points and asymptotes, on separate axes sketch the graph of

$$\mathbf{a} \quad y = \frac{1}{\mathbf{f}(x)}$$

b
$$y = [f(x)]^2$$

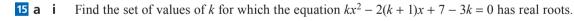
c
$$y = f(2x - 1)$$
.

The function f is defined by $f(x) = 3^x + 3^{-x}$. Deterine algebraically whether f is even, odd or neither.



- **a** Find the smallest value of k such that f has an inverse function.
- **b** For this value of k, find $f^{-1}(x)$ and state its domain.
- The functions f and g are defined by $f(x) = ax^2 + bx + c$, $x \in \mathbb{R}$ and $g(x) = p \sin x + qx + r$, $x \in \mathbb{R}$ where a, b, c, p, q, r are real constants.
 - **a** Given that f is an even function, show that b = 0.
 - **b** Given that g is an odd function, find the value of r. The functions h is both odd and even, with domain \mathbb{R} .
 - **c** Find h(x).

Mathematics HL May 2015 Paper 1 TZ1 Q5



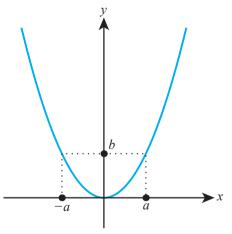
ii Hence determine the range of the function
$$f(x) = \frac{2x-7}{x^2-2x-3}$$

- **b** Sketch the graph of y = f(x) labelling any vertical asymptotes.
- **16** a Sketch the graph of y = |2|x| 3|. State the coordinates of any axis intercepts.
 - **b** Solve the equation |2|x| 3| = 2.
- The function f is defined by f(x) = (x a)(x b). On separate axes, sketch the graph of y = f(|x|) in the case where
 - **a** 0 < b < a
- **b** b < 0 < a
- **c** b < a < 0.
- Describe a sequence of two transformations that map the graph of y = f(x) onto the graph of $y = f\left(\frac{x-6}{3}\right)$.
 - **b** Describe a different sequence of two transformations that has the same effect as in part **a**.

- 19 Let $f(x) = x^2 3$.
 - **a** On the same axes, sketch the graphs of y = |f(x)| and $y = \frac{1}{f(x)}$.
 - **b** Hence solve the inequality $|f(x)| \le \frac{1}{f(x)}$.
- Given f(x) = |x + a| + |x + b|, where $a, b \ne 0$, find the condition on a and b such that f is an even function.
- 21 The function f is defined by $f(x) = e^{2x} 8e^x + 7$, $x \le k$.
 - **a** Find the largest value of k such that f has an inverse function.
 - **b** For this value of k, find $f^{-1}(x)$ and state its domain.
- 22 The function f is defined by $f(x) = xe^{\frac{x}{2}}, x \ge k$.
 - **a** Find f'(x) and f''(x).
 - **b** Find the smallest value of k such that f has an inverse function.
 - **c** For this value of k, find the domain of f^{-1} .

23 Let $f(x) = \frac{3x}{x^2 + 1}$.

- **a** i Show algebraically that f is an odd function.
 - ii What type of symmetry does this mean the graph of y = f(x) must have?
- **b** i If the line y = k intersects the curve, show that $4k^2 9 \le 0$.
 - ii Hence find the coordinates of the turning points of the curve.
- **c** Sketch the graph of y = |f(x)|.
- **d** Solve the inequality $|f(x)| \ge |x|$.
- 24 The diagram below shows the graph of the function y = f(x), defined for all $x \in \mathbb{R}$, where b > a > 0.



Consider the function $g(x) = \frac{1}{f(x-a)-b}$.

- **a** Find the largest possible domain of the function g.
- **b** Sketch the graph of y = g(x). Indicate any asymptotes and local maxima or minima, and write down their equations and coordinates.

Mathematics HL May 2011 Paper 1 TZ1 Q10

Mixed Practice

- The function f is defined by $f(x) = \frac{2x-1}{x+2}$, with domain $D = \{x: -1 \le x \le 8\}$.
 - **a** Express f(x) in the form $A + \frac{B}{x+2}$, where A and $B \in \mathbb{Z}$.
 - **b** Hence show that f'(x) > 0 on D.
 - **c** State the range of f.
 - **d** i Find an expression for $f^{-1}(x)$.
 - ii Sketch the graph of f(x), showing the points of intersection with both axes.
 - iii On the same diagram, sketch the graph of $y = f^{-1}(x)$.
 - **e** i On a different diagram, sketch the graph of y = f(|x|) where $x \in D$.
 - ii Find all the solutions of the equation $f(|x|) = -\frac{1}{4}$.

Mathematics HL May 2013 Paper 1 TZ2 Q12

26 Let $f(x) = \frac{x^2 + 7x + 10}{x + 1}$.

- **a** Find the equation of the oblique asymptote.
- **b** By finding a condition on k such that f(x) = k has real solutions, or otherwise, find the coordinates of the turning points of f.
- **c** On the same axes, sketch the grap of y = f(x) and y = 2x + 7.
- **d** Hence solve the inequality $\frac{x^2 + 7x + 10}{x + 1} < 2x + 7$.
- **e** On a separate set of axes, sketch the graph of y = |f(x)|, labelling the coordinates of all axis intercepts.
- **f** State the complete set of values of c for which |f(x)| = c has two solutions.
- The function f is defined by $f(x) = \frac{ax^2 + bx + c}{dx + e}$ and the function g is defined by $g(x) = \frac{1}{f(x)}$. f(x) has an oblique asymptote y = x + 1 and g(x) has vertical asymptotes $x = \frac{3}{2}$ and x = -4. Solve the equation f(x) = g(x).

Find the value of c for which the function $f(x) = \frac{3x-5}{x+c}$ is self-inverse.

Exercise 7E

- 1 a Neither
 - **b** Even
- a Neither **b** Odd
- a Neither
- **b** Even
- a Even a Odd
- **b** Neither
- **b** Even
- a Neither
- **b** Even

7 a Odd

b Neither

- 8 a Even
- **b** Neither
- 9 a $x \le 2$
- **b** $x \ge 2$
- **10** a $x \ge 4$
- **b** $x \le -2$
- **11** a $x \le 1$
- **b** $x \ge 3$

12 a Yes

b Yes

13 a No

b Yes

14 a No

b Yes

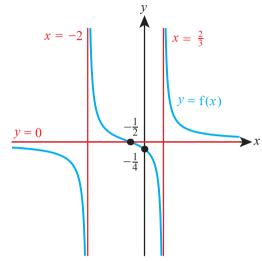
- 15 Odd
- 16 Neither
- 17 Odd
- 18 a k = -4
 - **b** $f^{-1}(x) = -4 + \sqrt{x-3}, x \ge 3$
- 19 a $x \le \frac{3}{2}$

b
$$f^{-1}(x) = \frac{3}{2} - \sqrt{x + \frac{5}{4}}, x \ge -\frac{5}{4}$$

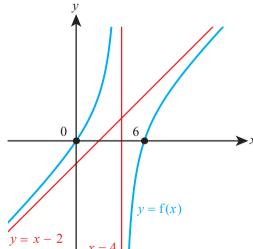
- 20 b $x \in \mathbb{R}$
- 21 b Neither
- 23 Even
- **24** a $-3 \le x \le -1$
 - **b** $-6 \le x \le -2$
- 25 a k = 2
 - **b** $x \ge -11$
- 26 a $x \le \ln 4$
 - **b** $x \le 4 4 \ln 4$
- **27 b** $x \neq \frac{2}{3}$
- 28 a = -1
- 30 c = 2

Chapter 7 Mixed Practice

- 1 a $x = \frac{2}{3}, x = -2$
 - **b** $\left(-\frac{1}{2}, 0\right)$ and $\left(0, -\frac{1}{4}\right)$

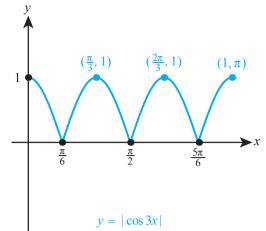


- 2 a i x = 4
- ii y = x 2
- **b** (0,0) and (6,0)



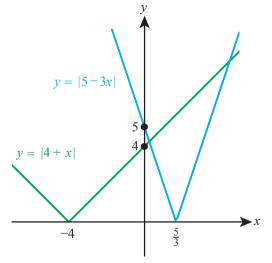
- $\begin{bmatrix} -\frac{3}{2}, 0 \end{bmatrix} \cup \begin{bmatrix} 2, \infty \end{bmatrix}$
- **4 b** $-2 \le x \le 1 \text{ or } x \ge 4$
- 5 $-1.62 \le x \le -0.366$ or $0.618 \le x \le 1.37$
- 6 $0 < x \le 3.04 \text{ or } 7.01 \le x \le 8.56$

7 a



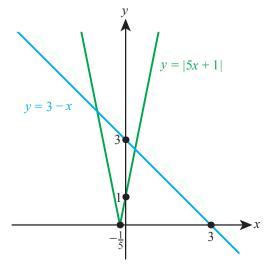
b
$$x = \frac{\pi}{9}, \frac{2\pi}{9}, \frac{4\pi}{9}, \frac{5\pi}{9}, \frac{7\pi}{9}, \frac{8\pi}{9}$$

8 a



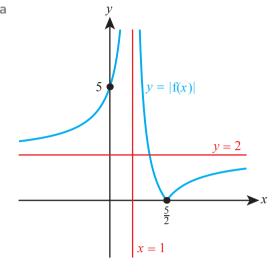
b
$$x \le \frac{1}{4} \text{ or } x \ge \frac{9}{2}$$

9 a

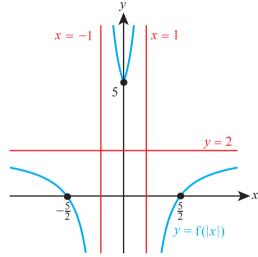


b
$$-1 < x < \frac{1}{3}$$

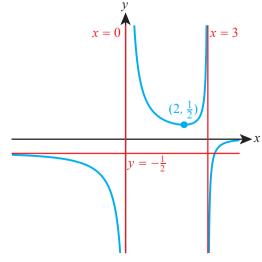
10 a



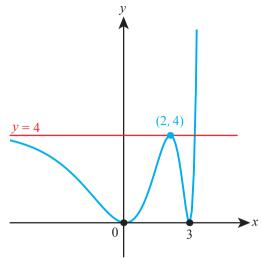
b



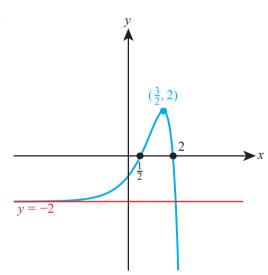
11 a



b



C



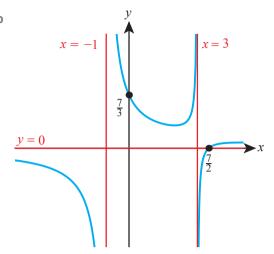
- 12 Even
- 13 a k = 3

b
$$f^{-1}(x) = 3 + \sqrt{5 - x}, x \le 5$$

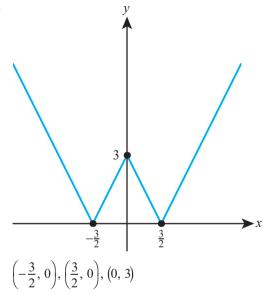
- 14 b r = 0
 - c k(x) = 0
- **15** a i $k \le \frac{1}{4}$ or $k \ge 1$

ii
$$f(x) \le \frac{1}{4}$$
 or $f(x) \ge 1$

b

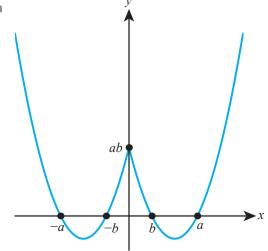


16 a

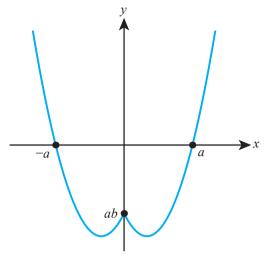


b
$$x = \pm \frac{1}{2}, \pm \frac{5}{2}$$

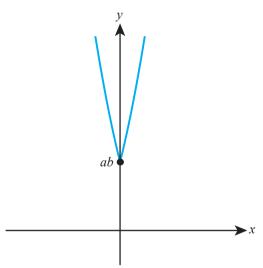
17 a



b

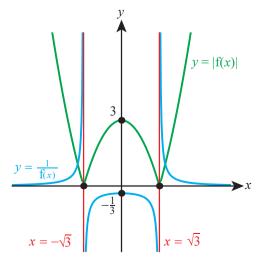


C



- **18** a Horizontal stretch with scale factor 3 followed by horizontal translation by +6
 - **b** Horizontal translation by +2 followed by horizontal stretch with scale factor 3

19 a



b
$$-2 \le x < -\sqrt{3} \text{ or } \sqrt{3} < x \le 2$$

20
$$a = -b$$

21 a
$$k = \ln 4$$

b
$$f^{-1}(x) = \ln(4 - \sqrt{x+9}), -9 \le x < 7$$

22 a
$$f'(x) = e^{\frac{x}{2}} + \frac{x}{2}e^{\frac{x}{2}}, f''(x) = e^{\frac{x}{2}} + \frac{x}{4}e^{\frac{x}{2}}$$

b
$$k = -2$$

c
$$x \ge -2e^{-1}$$

23 a ii Rotation 180° around the origin

b ii
$$\left(1, \frac{3}{2}\right), \left(-1, -\frac{3}{2}\right)$$

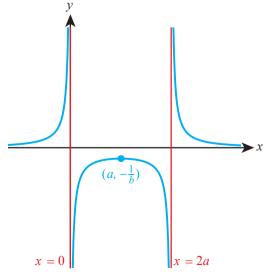
C



d
$$-\sqrt{2} \le x \le \sqrt{2}$$

24 a
$$x \neq 0, 2a$$

b

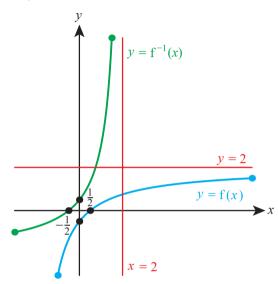


25 a
$$2 - \frac{5}{x+2}$$

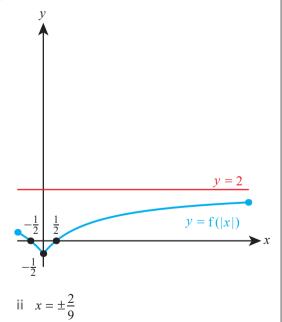
c
$$-3 \le f(x) \le 1.5$$

d i
$$f^{-1}(x) = \frac{2x+1}{2-x}$$

ii, iii

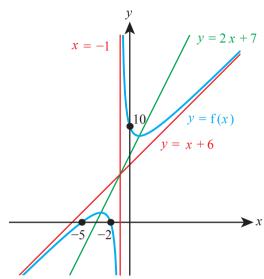


e i

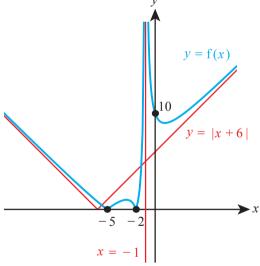


ii
$$x = \pm \frac{2}{9}$$

26 a
$$y = x + 6$$



d
$$-3 < x < -1 \text{ or } x > 1$$



f
$$c = 0$$
 or $1 < c < 9$

27
$$x = -4.5, -3.59, 1, 2.09$$

28
$$c = -3$$