Operations on sets

イロト イヨト イヨト イヨト

Things you need to learn:

The following operations on sets:

- Union of two sets: $A \cup B$;
- Intersection of two sets: $A \cap B$;
- Difference of two sets: A B;
- Complement of a given set: A^c .

Things you need to learn:

The following operations on sets:

- Union of two sets: $A \cup B$;
- Intersection of two sets: $A \cap B$;
- Difference of two sets: A B;
- Complement of a given set: A^c.

Note that the union is sometimes also called the sum and the intersection is sometimes called the product.

We use the notation $a \in A$ to indicate that a is an element of A.

We use the notation $A \subseteq B$ to indicate that A is a subset of B, i.e. that every element of A is also an element of B.

We use the notation $A \subseteq B$ to indicate that A is a subset of B, i.e. that every element of A is also an element of B.

 \emptyset denotes the empty set, the set that has no elements.

We use the notation $A \subseteq B$ to indicate that A is a subset of B, i.e. that every element of A is also an element of B.

 \emptyset denotes the empty set, the set that has no elements.

We use the notation $A \subseteq B$ to indicate that A is a subset of B, i.e. that every element of A is also an element of B.

 $\ensuremath{\emptyset}$ denotes the empty set, the set that has no elements.

The following are true statements:

• $A \subseteq A$ for any set A.

We use the notation $A \subseteq B$ to indicate that A is a subset of B, i.e. that every element of A is also an element of B.

 $\ensuremath{\emptyset}$ denotes the empty set, the set that has no elements.

- $A \subseteq A$ for any set A.
- $\emptyset \subseteq A$ for any set A.

We use the notation $A \subseteq B$ to indicate that A is a subset of B, i.e. that every element of A is also an element of B.

 $\ensuremath{\emptyset}$ denotes the empty set, the set that has no elements.

- $A \subseteq A$ for any set A.
- $\emptyset \subseteq A$ for any set A.

• If
$$A \subseteq B$$
 and $B \subseteq A$, then $A = B$.

We use the notation $A \subseteq B$ to indicate that A is a subset of B, i.e. that every element of A is also an element of B.

 $\ensuremath{\emptyset}$ denotes the empty set, the set that has no elements.

- $A \subseteq A$ for any set A.
- $\emptyset \subseteq A$ for any set A.
- If $A \subseteq B$ and $B \subseteq A$, then A = B.
- If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$.

Note that $A \subseteq B$ is true when A = B (every element of A is in B).

Note that $A \subseteq B$ is true when A = B (every element of A is in B). If we want to exclude this possibility we write $A \subsetneq B$. In such case we call A a **proper subset** of B. In other words we have $A \subsetneq B$ if $A \subseteq B$ and $A \neq B$.

Note that $A \subseteq B$ is true when A = B (every element of A is in B). If we want to exclude this possibility we write $A \subsetneq B$. In such case we call A a **proper subset** of B. In other words we have $A \subsetneq B$ if $A \subseteq B$ and $A \neq B$.

You may find this analogous to \leq and < operators.

A union $A \cup B$ of two sets A and B is the set of all elements that belong to at least one of A or B.

A union $A \cup B$ of two sets A and B is the set of all elements that belong to at least one of A or B.

If $A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$, then $A \cup B = \{1, 2, 3, 4\}$

An intersection $A \cap B$ of two sets A and B is the set of all elements that belong to both A and B.

An intersection $A \cap B$ of two sets A and B is the set of all elements that belong to both A and B.

If $A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$, then $A \cap B = \{2, 3\}$

э

Make sure you convince yourselves of the following:

Make sure you convince yourselves of the following:

• If $A \subseteq B$, then $A \cup B = B$;

Make sure you convince yourselves of the following:

- If $A \subseteq B$, then $A \cup B = B$;
- If $A \subseteq B$, then $A \cap B = A$;

Make sure you convince yourselves of the following:

- If $A \subseteq B$, then $A \cup B = B$;
- If $A \subseteq B$, then $A \cap B = A$;

In particular:

Make sure you convince yourselves of the following:

- If $A \subseteq B$, then $A \cup B = B$;
- If $A \subseteq B$, then $A \cap B = A$;

In particular:

•
$$\emptyset \cup A = A;$$

Make sure you convince yourselves of the following:

- If $A \subseteq B$, then $A \cup B = B$;
- If $A \subseteq B$, then $A \cap B = A$;

In particular:

- $\emptyset \cup A = A;$
- $\emptyset \cap A = \emptyset;$

Difference

A difference A - B of two sets A and B is the set of all elements that belong to A but do not belong to B.

Difference

A difference A - B of two sets A and B is the set of all elements that belong to A but do not belong to B.

If $A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$, then $A - B = \{1\}$,

Difference

A difference A - B of two sets A and B is the set of all elements that belong to A but do not belong to B.

If $A = \{1, 2, 3\}$ and $B = \{2, 3, 4\}$, then $A - B = \{1\}$, but $B - A = \{4\}$

Let
$$A = \{1, 2, 3, 4, 5, 6, 7\}$$
 and $B = \{2, 4, 6, 8, 10\}$.
Find $A \cup B$, $A \cap B$, $A - B$ and $B - A$.

3

イロト イヨト イヨト イヨト

$A \cup B$ denotes all elements that are in at least one of A or B, so we have:

$A \cup B$ denotes all elements that are in at least one of A or B, so we have:

 $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 10\}$

 $A \cap B$ contain all elements that are in both A and B, so we have:

 $A \cap B$ contain all elements that are in both A and B, so we have:

 $A \cap B = \{2, 4, 6\}$

 $A \cap B$ contain all elements that are in both A and B, so we have:

 $A\cap B=\{2,4,6\}$

Note: $1 \notin A \cap B$, since 1 does not belong to *B*. Similarly $8 \notin A \cap B$, since 8 does not belong to *A*.

A - B denotes the elements that are in A, but are not in B.

イロト イヨト イヨト イヨト

A - B denotes the elements that are in A, but are not in B. Note that this is different from B - A. We have:

A - B denotes the elements that are in A, but are not in B. Note that this is different from B - A. We have:

$$A - B = \{1, 3, 5, 7\}$$

A - B denotes the elements that are in A, but are not in B. Note that this is different from B - A. We have:

$$A - B = \{1, 3, 5, 7\}$$

Note: $2 \notin A - B$, since 2 belongs to *B*, so we excluded it. Also $9 \notin A - B$, since 9 wasn't in *A* in the first place.

B - A is difference between B and A, it's the set of all elements in B that are not in A. We have:

B - A is difference between B and A, it's the set of all elements in B that are not in A. We have:

 $B - A = \{8, 10\}$

B - A is difference between B and A, it's the set of all elements in B that are not in A. We have:

 $B - A = \{8, 10\}$

Note: $6 \notin B - A$, since 6 is in A, so we excluded it. And $9 \notin B - A$, since 9 wasn't in B.

イロト イポト イヨト イヨト 二日

Complement

Usually in a given problem we have a set U - the universal set, which denotes all elements that are considered for the given problem. Note that we have: $A \subseteq U$ for any set A.

Complement

Usually in a given problem we have a set U - the universal set, which denotes all elements that are considered for the given problem. Note that we have: $A \subseteq U$ for any set A.

We can then define the complement of a set A, denoted A^c , as all element that are not in A.

Complement

Usually in a given problem we have a set U - the universal set, which denotes all elements that are considered for the given problem. Note that we have: $A \subseteq U$ for any set A.

We can then define the complement of a set A, denoted A^c , as all element that are not in A.

Note that $A^c = U - A$.

Let U be the set of positive integers less than 10 and $A = \{2, 3, 5, 7\}$ and $B = \{2, 4, 6, 8\}$.

Find A^c , B^c , $A^c \cap B^c$.

U is our universal set, so that for the purpose of this question we only consider elements that are in U.

U is our universal set, so that for the purpose of this question we only consider elements that are in U. A^c is the complement of A, so the elements that are not in A. Of course we need to take into account our universal set. We have:

U is our universal set, so that for the purpose of this question we only consider elements that are in U. A^c is the complement of A, so the elements that are not in A. Of course we need to take into account our universal set. We have:

$$A^{c} = \{1, 4, 6, 8, 9\}$$

U is our universal set, so that for the purpose of this question we only consider elements that are in U. A^c is the complement of A, so the elements that are not in A. Of course we need to take into account our universal set. We have:

$$A^c = \{1, 4, 6, 8, 9\}$$

Note: $2 \notin A^c$, since 2 is an element of A and in A^c we want elements that are not in A. On the other hand $12 \notin A^c$, since 12 does not belong to our universal set, so we don't even consider it.

 B^c is the complement of B, these are the elements that are not in B. We still need to remember about our universal set. We have:

Image: Image:

 B^c is the complement of B, these are the elements that are not in B. We still need to remember about our universal set. We have:

 $B^c = \{1, 3, 5, 7, 9\}$

Image: A matrix

 B^c is the complement of B, these are the elements that are not in B. We still need to remember about our universal set. We have:

$$B^c = \{1, 3, 5, 7, 9\}$$

Note: $2 \notin B^c$, since 2 is in B and $12 \notin B^c$, since 12 does not belong to the universal set.

Zadanie 2

 $A^c \cap B^c$ is the intersection of A^c and B^c . We know that:

 $A^{c} = \{1, 4, 6, 8, 9\}$ $B^{c} = \{1, 3, 5, 7, 9\}$

Zadanie 2

 $A^c \cap B^c$ is the intersection of A^c and B^c . We know that:

 $A^{c} = \{1, 4, 6, 8, 9\}$ $B^{c} = \{1, 3, 5, 7, 9\}$

So the intersection of the above sets is:

Zadanie 2

 $A^c \cap B^c$ is the intersection of A^c and B^c . We know that:

 $A^{c} = \{1, 4, 6, 8, 9\}$ $B^{c} = \{1, 3, 5, 7, 9\}$

So the intersection of the above sets is: $A^c \cap B^c = \{1, 9\}$

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

イロト 不得 トイヨト イヨト 二日

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

Find:

 $A \cap B$

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

Find:

 $A \cap B = \{3\};$

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

Find:

 $A \cap B = \{3\};$ $B \cup C$

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

Find:

$$A \cap B = \{3\};$$

 $B \cup C = \{3, 6, 7, 8, 9\};$

イロト 不得 トイヨト イヨト 二日

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

$$A \cap B = \{3\};$$

 $B \cup C = \{3, 6, 7, 8, 9\};$
 $A \cap C$

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

$$A \cap B = \{3\};$$

 $B \cup C = \{3, 6, 7, 8, 9\};$
 $A \cap C = \emptyset$

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

$$A \cap B = \{3\};$$

$$B \cup C = \{3, 6, 7, 8, 9\};$$

$$A \cap C = \emptyset$$

$$A^{c}$$

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

$$A \cap B = \{3\};\$$

$$B \cup C = \{3, 6, 7, 8, 9\};\$$

$$A \cap C = \emptyset$$

$$A^{c} = \{5, 6, 7, 8, 9, 10\};\$$

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

$$A \cap B = \{3\};\$$

$$B \cup C = \{3, 6, 7, 8, 9\};\$$

$$A \cap C = \emptyset$$

$$A^{c} = \{5, 6, 7, 8, 9, 10\};\$$

$$A^{c} \cup C$$

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

$$A \cap B = \{3\};$$

$$B \cup C = \{3, 6, 7, 8, 9\};$$

$$A \cap C = \emptyset$$

$$A^{c} = \{5, 6, 7, 8, 9, 10\};$$

$$A^{c} \cup C = \{5, 6, 7, 8, 9, 10\};$$

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

$$A \cap B = \{3\};\$$

$$B \cup C = \{3, 6, 7, 8, 9\};\$$

$$A \cap C = \emptyset$$

$$A^{c} = \{5, 6, 7, 8, 9, 10\};\$$

$$A^{c} \cup C = \{5, 6, 7, 8, 9, 10\};\$$

$$A^{c} \cap B$$

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

$$A \cap B = \{3\};$$

$$B \cup C = \{3, 6, 7, 8, 9\};$$

$$A \cap C = \emptyset$$

$$A^{c} = \{5, 6, 7, 8, 9, 10\};$$

$$A^{c} \cup C = \{5, 6, 7, 8, 9, 10\};$$

$$A^{c} \cap B = \{6, 9\}$$

Exercise 1 ctd.

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

イロト 不得 トイヨト イヨト 二日

Exercise 1 ctd.

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

Exercise 1 ctd.

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

Find:

 $A^c \cap B^c$

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

Find:

 $A^{c} \cap B^{c} = \{5, 7, 8, 10\};$

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

Find:

 $A^{c} \cap B^{c} = \{5, 7, 8, 10\};\ (B \cup C) \cap A$

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

Find:

 $A^{c} \cap B^{c} = \{5, 7, 8, 10\};$ $(B \cup C) \cap A = \{3\};$

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

Find:

 $A^{c} \cap B^{c} = \{5, 7, 8, 10\};$ $(B \cup C) \cap A = \{3\};$ $(A \cup C)^{c}$

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

Find:

 $A^{c} \cap B^{c} = \{5, 7, 8, 10\};$ $(B \cup C) \cap A = \{3\};$ $(A \cup C)^{c} = \{5, 10\}$

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

Find:

 $A^{c} \cap B^{c} = \{5, 7, 8, 10\};$ $(B \cup C) \cap A = \{3\};$ $(A \cup C)^{c} = \{5, 10\}$ $(A \cap B)^{c}$

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

$$\begin{aligned} A^{c} \cap B^{c} &= \{5, 7, 8, 10\};\\ (B \cup C) \cap A &= \{3\};\\ (A \cup C)^{c} &= \{5, 10\}\\ (A \cap B)^{c} &= \{1, 2, 4, 5, 6, 7, 8, 9, 10\}; \end{aligned}$$

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

$$A^{c} \cap B^{c} = \{5, 7, 8, 10\};$$

$$(B \cup C) \cap A = \{3\};$$

$$(A \cup C)^{c} = \{5, 10\}$$

$$(A \cap B)^{c} = \{1, 2, 4, 5, 6, 7, 8, 9, 10\};$$

$$(A \cup B) \cap C$$

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

$$A^{c} \cap B^{c} = \{5, 7, 8, 10\};$$

$$(B \cup C) \cap A = \{3\};$$

$$(A \cup C)^{c} = \{5, 10\}$$

$$(A \cap B)^{c} = \{1, 2, 4, 5, 6, 7, 8, 9, 10\};$$

$$(A \cup B) \cap C = \{6, 9\};$$

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

$$\begin{aligned} A^{c} \cap B^{c} &= \{5, 7, 8, 10\};\\ (B \cup C) \cap A &= \{3\};\\ (A \cup C)^{c} &= \{5, 10\}\\ (A \cap B)^{c} &= \{1, 2, 4, 5, 6, 7, 8, 9, 10\};\\ (A \cup B) \cap C &= \{6, 9\};\\ (A^{c} \cap B^{c}) \cup C^{c} \end{aligned}$$

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4\}$, $B = \{3, 6, 9\}$ and $C = \{6, 7, 8, 9\}$.

$$A^{c} \cap B^{c} = \{5, 7, 8, 10\};$$

$$(B \cup C) \cap A = \{3\};$$

$$(A \cup C)^{c} = \{5, 10\}$$

$$(A \cap B)^{c} = \{1, 2, 4, 5, 6, 7, 8, 9, 10\};$$

$$(A \cup B) \cap C = \{6, 9\};$$

$$(A^{c} \cap B^{c}) \cup C^{c} = \{1, 2, 3, 4, 5, 7, 8, 10\}$$

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

イロト 不得 トイヨト イヨト 二日

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

Find:

 $A \cup B$

Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

Find:

 $A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 10\};$

イロン 不聞 とくほと 不良 とう

Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

Find:

$$A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 10\};$$

 $A - C$

3

Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

Find:

$$A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 10\};$$

 $A - C = \{1, 4, 6\};$

3

Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

Find:

$$A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 10\};$$

 $A - C = \{1, 4, 6\};$
 $B - C$

3

Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

Find:

$$A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 10\};$$

 $A - C = \{1, 4, 6\};$
 $B - C = \{4, 6, 8, 10\}$

3

Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

Find:

$$A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 10\};$$

 $A - C = \{1, 4, 6\};$
 $B - C = \{4, 6, 8, 10\}$
 A^{c}

3

Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

Find:

$$A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 10\};$$

$$A - C = \{1, 4, 6\};$$

$$B - C = \{4, 6, 8, 10\}$$

$$A^{c} = \{8, 9, 10\};$$

3

Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

Find:

$$A \cup B = \{1, 2, 3, 4, 5, 6, 7, 8, 10\};$$

$$A - C = \{1, 4, 6\};$$

$$B - C = \{4, 6, 8, 10\}$$

$$A^{c} = \{8, 9, 10\};$$

$$C^{c}$$

3

Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

Find:

$$\begin{split} A \cup B &= \{1, 2, 3, 4, 5, 6, 7, 8, 10\}; \\ A - C &= \{1, 4, 6\}; \\ B - C &= \{4, 6, 8, 10\} \\ A^c &= \{8, 9, 10\}; \\ C^c &= \{1, 4, 6, 8, 9, 10\}; \end{split}$$

3

Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

Find:

$$\begin{split} A \cup B &= \{1, 2, 3, 4, 5, 6, 7, 8, 10\};\\ A - C &= \{1, 4, 6\};\\ B - C &= \{4, 6, 8, 10\}\\ A^c &= \{8, 9, 10\};\\ C^c &= \{1, 4, 6, 8, 9, 10\};\\ A^c \cup C^c \end{split}$$

3

Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

Find:

$$\begin{split} A \cup B &= \{1, 2, 3, 4, 5, 6, 7, 8, 10\};\\ A - C &= \{1, 4, 6\};\\ B - C &= \{4, 6, 8, 10\}\\ A^c &= \{8, 9, 10\};\\ C^c &= \{1, 4, 6, 8, 9, 10\};\\ A^c \cup C^c &= \{1, 4, 6, 8, 9, 10\} \end{split}$$

3

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

イロト 不得 トイヨト イヨト 二日

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

Let $U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

Find:

 $(A \cap B)^c$

Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

 $(A \cap B)^{c} = \{1, 3, 5, 7, 8, 9, 10\};$

イロン 不聞と 不同と 不同とう

Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

 $(A \cap B)^c = \{1, 3, 5, 7, 8, 9, 10\};$ $A^c \cap (B \cup C)$

3

イロン 不通 と 不良 とう アン

Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

 $(A \cap B)^c = \{1, 3, 5, 7, 8, 9, 10\};$ $A^c \cap (B \cup C) = \{8, 10\};$

Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

$$(A \cap B)^c = \{1, 3, 5, 7, 8, 9, 10\};$$

 $A^c \cap (B \cup C) = \{8, 10\};$
 $(B \cap C) - A$

Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

$$(A \cap B)^c = \{1, 3, 5, 7, 8, 9, 10\};$$

 $A^c \cap (B \cup C) = \{8, 10\};$
 $(B \cap C) - A = \emptyset$

Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

$$(A \cap B)^{c} = \{1, 3, 5, 7, 8, 9, 10\};$$

 $A^{c} \cap (B \cup C) = \{8, 10\};$
 $(B \cap C) - A = \emptyset$
 $A - (B \cup C)$

Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

$$(A \cap B)^c = \{1, 3, 5, 7, 8, 9, 10\};$$

 $A^c \cap (B \cup C) = \{8, 10\};$
 $(B \cap C) - A = \emptyset$
 $A - (B \cup C) = \{1\};$

Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

$$(A \cap B)^{c} = \{1, 3, 5, 7, 8, 9, 10\};$$

 $A^{c} \cap (B \cup C) = \{8, 10\};$
 $(B \cap C) - A = \emptyset$
 $A - (B \cup C) = \{1\};$
 $C^{c} - B^{c}$

Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

$$(A \cap B)^{c} = \{1, 3, 5, 7, 8, 9, 10\};$$

$$A^{c} \cap (B \cup C) = \{8, 10\};$$

$$(B \cap C) - A = \emptyset$$

$$A - (B \cup C) = \{1\};$$

$$C^{c} - B^{c} = \{4, 6, 8, 10\};$$

Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, $A = \{1, 2, 3, 4, 5, 6, 7\}$, $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

$$(A \cap B)^{c} = \{1, 3, 5, 7, 8, 9, 10\};$$

$$A^{c} \cap (B \cup C) = \{8, 10\};$$

$$(B \cap C) - A = \emptyset$$

$$A - (B \cup C) = \{1\};$$

$$C^{c} - B^{c} = \{4, 6, 8, 10\};$$

$$(A^{c} \cup B) - C$$

Let
$$U = \{1, 2, 3, 4, 5, 6, 7, 8, 9, 10\}$$
, $A = \{1, 2, 3, 4, 5, 6, 7\}$,
 $B = \{2, 4, 6, 8, 10\}$ and $C = \{2, 3, 5, 7\}$.

$$(A \cap B)^{c} = \{1, 3, 5, 7, 8, 9, 10\};$$

$$A^{c} \cap (B \cup C) = \{8, 10\};$$

$$(B \cap C) - A = \emptyset$$

$$A - (B \cup C) = \{1\};$$

$$C^{c} - B^{c} = \{4, 6, 8, 10\};$$

$$(A^{c} \cup B) - C = \{4, 6, 8, 9, 10\}$$

3

In case of any questions you can message me via Librus or MS Teams.