Venn diagrams with 3 sets

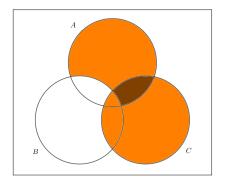
The presentation will introduce two ways of representing appropriate regions on Venn diagrams with 3 sets. The fist one is done by shading regions step by step (it may require some erasing as well). In the second method we do most of the work in our heads.

Represent the set $(A \cap B^c) \cup C$ on a Venn diagram.

Tomasz Lechowski 2SLO prelB November 14, 2024 3 /

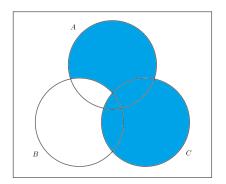
Represent the set $(A \cap B^c) \cup C$ on a Venn diagram.

We can start by shading $A \cap B^c$ and C. We get the following diagram:



The darker colour means that this region has been shaded twice.

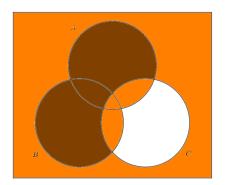
Now we want the union \cup of these two sets, this means that we take everything that has been shaded at least once, so the answer will be:



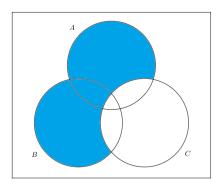
Represent the set $(A \cup B) \cap C^c$ on a Venn diagram.

Represent the set $(A \cup B) \cap C^c$ on a Venn diagram.

We can start by shading $A \cup B$ and C^c . We get the following diagram:



Now we want the intersection \cap of these two sets, so we take everything that has been shaded twice, so the answer will be:

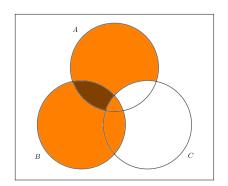


Represent the set $B \cap (A \cap C^c)$ on a Venn diagram.

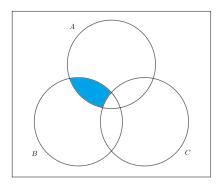
Tomasz Lechowski 2SLO prelB November 14, 2024

Represent the set $B \cap (A \cap C^c)$ on a Venn diagram.

We can start by shading B and $A \cap C^c$. We get the following diagram:



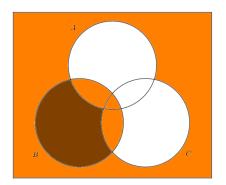
Now we want the intersection \cap of these two sets, so the answer will be:



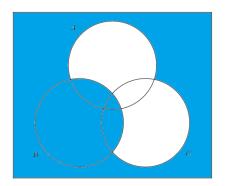
Represent the set $B \cup (A' \cap C^c)$ on a Venn diagram.

Represent the set $B \cup (A' \cap C^c)$ on a Venn diagram.

We can start by shading B and $A^c \cap C^c$. We get the following diagram:



Now we want the union \cup of these two sets, so the answer will be:



Next slides will show a more direct approach.

Mark on the diagram the set corresponding to $(A \cap B^c) \cup C$.

Tomasz Lechowski 2SLO prelB November 14, 2024 12 / 2:

Mark on the diagram the set corresponding to $(A \cap B^c) \cup C$.

Let's make some observations:

Tomasz Lechowski 2SLO prelB November 14, 2024 12 / 22

Mark on the diagram the set corresponding to $(A \cap B^c) \cup C$.

Let's make some observations:

• $(A \cap B^c)$ is everything in A and not in B.

Tomasz Lechowski 2SLO prelB November 14, 2024 12 / 22

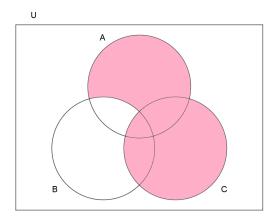
Mark on the diagram the set corresponding to $(A \cap B^c) \cup C$.

- $(A \cap B^c)$ is everything in A and not in B.
- *C* is of course everything in *C*.

Mark on the diagram the set corresponding to $(A \cap B^c) \cup C$.

- $(A \cap B^c)$ is everything in A and not in B.
- *C* is of course everything in *C*.
- Finally we have ∪ between these, so we want elements that are in at least one of the two sets.

Mark on the diagram the set corresponding to $(A \cap B^c) \cup C$. Answer:



Mark on the diagram the set corresponding to $(A \cup B)^c \cap C^c$.

Tomasz Lechowski 2SLO prelB November 14, 2024 14 / 22

Mark on the diagram the set corresponding to $(A \cup B)^c \cap C^c$.

Mark on the diagram the set corresponding to $(A \cup B)^c \cap C^c$.

Let's make some observations:

• $(A \cup B)^c$ is everything outside of A and B. We could read this as: it is not true that it is in A or in B.

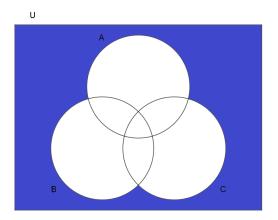
Mark on the diagram the set corresponding to $(A \cup B)^c \cap C^c$.

- $(A \cup B)^c$ is everything outside of A and B. We could read this as: it is not true that it is in A or in B.
- C^c is everything outside of C. This is *not in C*.

Mark on the diagram the set corresponding to $(A \cup B)^c \cap C^c$.

- $(A \cup B)^c$ is everything outside of A and B. We could read this as: it is not true that it is in A or in B.
- C^c is everything outside of C. This is not in C.
- Finally we have ∩ between these, so we want elements that are in both sets. We have it is not true that it is in A or in B and it is not in C.

Mark on the diagram the set corresponding to $(A \cup B)^c \cap C^c$. Answer:



Mark on the diagram the set corresponding to $(A \cap B) \cup C^c$.

Tomasz Lechowski 2SLO prelB November 14, 2024 16,

Mark on the diagram the set corresponding to $(A \cap B) \cup C^c$.

Observations:

Mark on the diagram the set corresponding to $(A \cap B) \cup C^c$.

Observations:

• $(A \cap B)$ is everything that is both in A and in B.

Mark on the diagram the set corresponding to $(A \cap B) \cup C^c$.

Observations:

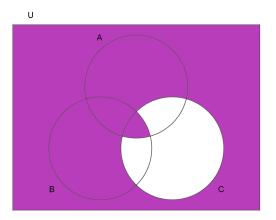
- $(A \cap B)$ is everything that is both in A and in B.
- C^c is again everything outside of C.

Mark on the diagram the set corresponding to $(A \cap B) \cup C^c$.

Observations:

- $(A \cap B)$ is everything that is both in A and in B.
- C^c is again everything outside of C.
- Finally we have ∪ between these, so we want elements that are in at least one of the two sets. We have it is both in A and B or it is not in C.

Mark on the diagram the set corresponding to $(A \cap B) \cup C^c$ Answer:



Mark on the diagram the set corresponding to $(A \cup B) \cap (C \cap A)$.

Tomasz Lechowski 2SLO prelB November 14, 2024 18 / 22

Mark on the diagram the set corresponding to $(A \cup B) \cap (C \cap A)$.

Mark on the diagram the set corresponding to $(A \cup B) \cap (C \cap A)$.

Let's make some observations:

• $(A \cup B)$ is everything in A or in B.

Tomasz Lechowski 2SLO prelB November 14, 2024 18 / 2

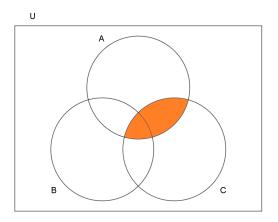
Mark on the diagram the set corresponding to $(A \cup B) \cap (C \cap A)$.

- $(A \cup B)$ is everything in A or in B.
- $(C \cap A)$ is everything in C and in A.

Mark on the diagram the set corresponding to $(A \cup B) \cap (C \cap A)$.

- $(A \cup B)$ is everything in A or in B.
- $(C \cap A)$ is everything in C and in A.
- $(A \cup B) \cap (C \cap A)$ is everything in both of the above so in A or in B and in C and in A.

Mark on the diagram the set corresponding to $(A \cup B) \cap (C \cap A)$. Answer:



Mark on the diagram the set corresponding to $(A^c \cap B^c) \cap (B \cup C)$.

Tomasz Lechowski 2SLO prelB November 14, 2024 20 / 22

Mark on the diagram the set corresponding to $(A^c \cap B^c) \cap (B \cup C)$.

Mark on the diagram the set corresponding to $(A^c \cap B^c) \cap (B \cup C)$.

Let's make some observations:

• $(A^c \cap B^c)$ is everything that is both outside of A and outside of B.

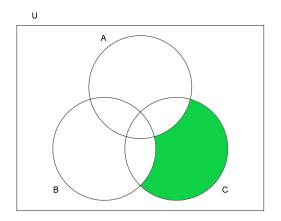
Mark on the diagram the set corresponding to $(A^c \cap B^c) \cap (B \cup C)$.

- $(A^c \cap B^c)$ is everything that is both outside of A and outside of B.
- $(B \cup C)$ is everything in B or in C.

Mark on the diagram the set corresponding to $(A^c \cap B^c) \cap (B \cup C)$.

- $(A^c \cap B^c)$ is everything that is both outside of A and outside of B.
- $(B \cup C)$ is everything in B or in C.
- $(A^c \cap B^c) \cap (B \cup C)$ is everything in both of the above so *not in A* and not in B and in B or in C.

Mark on the diagram the set corresponding to $(A^c \cap B^c) \cap (B \cup C)$. Answer:



In case of any questions you can message me via Librus or MS Teams.