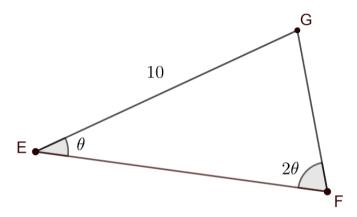

1. The following diagram shows the graph of  $f(x) = a\sin(bx) + d$ .

[6 points]

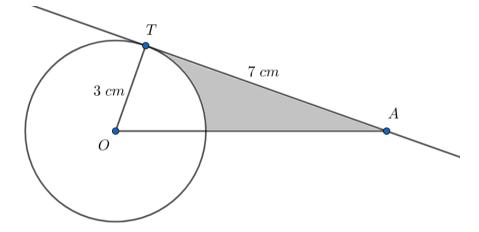



The graph has a y-intercept at 4, a minimum at (1.5, 2) and a maximum at (4.5, 6).

- (a) Find the values of a, b and d.
- (b) The domain of f(x) is restricted to  $1.5 \le x \le k$ , where k is the largest possible value for which the inverse function exists. State the value of k and find the inverse function.

Consider the following triangle:

 $[9 \ points]$ 




with EG = 10 and  $\angle GFE = 2 \angle FEG$ . Let  $\sin \theta = x$ .

- (a) Express  $\sin 2\theta$  in terms of x.
- (b) Hence express GF in terms of x.
- (c) Show that  $\sin \angle EGF = 3x 4x^3$ .
- (d) Hence express the area of the triangle in terms of x and find the greatest possible area of the triangle.

**3.** [4 points]

Consider a circle with radius 3 cm and a tangent to this circle drawn from point A, Let T be the point of tangency and let AT = 7 cm. The following diagrams shows the above information.



Find the shaded area. Give your answer correct to 4 significant figures.

| 4. To<br>masz is at a point $T_1$ on level ground. He sees a tower which is 145 metres away on bearing of 040. The<br>angle of elevation from To<br>masz to the top of the tower is 25°. To<br>masz walks 120 metres West to a point $T_2$ . |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
| (a) Find the distance from $T_2$ to the foot of the tower.                                                                                                                                                                                   |  |  |  |  |  |
| (b) Find the bearing of the tower from $T_2$ .                                                                                                                                                                                               |  |  |  |  |  |
| (c) Find the angle of elevation from $T_2$ to the top of the tower.                                                                                                                                                                          |  |  |  |  |  |
|                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                                                              |  |  |  |  |  |
|                                                                                                                                                                                                                                              |  |  |  |  |  |