Implicit differentiation [47 marks]

1. [Maximum mark: 7] The curve C has equation $\mathrm{e}^{2y}=x^3+y$.

EXN.2.AHL.TZ0.6

- (a) Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{3x^2}{2\mathrm{e}^{2y}-1}$. [3]
- (b) The tangent to ${\cal C}$ at the point P is parallel to the y-axis.

Find the x-coordinate of P. [4]

- 2. [Maximum mark: 8] 21N.2.AHL.TZ0.8 Consider the curve C given by $y=x-xy\ln(xy)$ where $x>0,\;y>0.$
 - (a) Show that $rac{\mathrm{d}y}{\mathrm{d}x} + \Big(xrac{\mathrm{d}y}{\mathrm{d}x} + y\Big)(1+\ln(xy)) = 1.$ [3]
 - (b) Hence find the equation of the tangent to ${\cal C}$ at the point where x=1. [5]
- 3. [Maximum mark: 15] 20N.1.AHL.TZ0.H_11 $\text{Consider the curve } C \text{ defined by } y^2 = \sin \left(xy \right), \; y \neq 0.$
 - (a) Show that $\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{y\cos{(xy)}}{2y x\cos{(xy)}}$. [5]
 - (b) Prove that, when $rac{\mathrm{d}y}{\mathrm{d}x}=0\ ,\ y=\pm1.$ [5]
 - (c) Hence find the coordinates of all points on C , for $0 < x < 4\pi$, where $rac{\mathrm{d}y}{\mathrm{d}x} = 0$. [5]

4. [Maximum mark: 8]

19N.2.AHL.TZ0.H_11

The following diagram shows part of the graph of $2x^2=\sin^3 y$ for $0\leqslant y\leqslant \pi$.

(a.i) Using implicit differentiation, find an expression for
$$\frac{dy}{dx}$$
. [4]

(a.ii) Find the equation of the tangent to the curve at the point
$$\left(\frac{1}{4}\,,\,\frac{5\pi}{6}\right).$$
 [4]

5. [Maximum mark: 9]

19M.1.AHL.TZ1.H_7

Find the coordinates of the points on the curve

$$y^3+3xy^2-x^3=27$$
 at which $rac{\mathrm{d}y}{\mathrm{d}x}=0.$ [9]

© International Baccalaureate Organization, 2025