

Markscheme

May 2024

Mathematics: Applications and interpretation

Higher level

Paper 1

20 pages

(M1)(A1)

(M1)(A1)

(M1)(A1)

1. (a) EITHER

N = 96 $PV = \mp 100000$ $FV = \pm 150000$ P/Y = 12C/Y = 12

OR

N = 8 $PV = \mp 100000$ $FV = \pm 150000$ P/Y = 1C/Y = 12

OR

$$150000 = 100000 \left(1 + \frac{I}{100 \times 12}\right)^{12 \times 8}$$

Note: Award *M1* for an attempt to use a financial app (at least 3 entries, not necessarily correct) or an attempt to use a compound interest formula. Award *A1* for all entries correct in financial app or correct substitution in compound interest formula.

THEN

(b)

I = 5.08 (5.07903...)

- N = 120 I% = 6.1 $PV = \mp 150000$ $PMT = \pm 1000$ P/Y = 12C/Y = 12

A1

[3 marks]

(M1)(A1)

A1

Note: Award *M1* for an attempt to use a financial app (at least 3 entries, not necessarily correct). Award *A1* for all entries correct in financial app (condone missing -/+ sign if the correct final answer is seen).

FV = (\$) 110867
Note: Answer must be correct to nearest dollar to award the final A1. Award (M1)(A1)A0 for an unsupported final answer to a greater degree of accuracy eg. (\$) 110866.70...

Award *M1A1A0* for a truncated answer of 110866 if no working is shown.

[3 marks] [Total: 6 marks]

2.	(a) (i) r=0.995 (0.994705)	A2		
	Note: Award A1 for 0.99.			
	(ii) $m = 10.6t + 43.9$ (10.6032)	A1A1		
	Note: Second A1 is for the correct va	riables.		
			[4 marks]	
	(b) EITHER			
	10.6032×1.5	(M1)		
	(10.6032(t+1.5)+43.8780)-	-(10.6032(t) + 43.8780) (M1)		

THEN

Note: Accept 16.

3.

[2 marks]

(c) Accept any valid reason **R1** e.g:

The students in the sample might not be of equal ability / she has not controlled for ability

She might have originally obtained close to full marks so an extra 15.9 would not be possible.

[1 mark] [Total: 7 marks]

(a) (i) attempt to rearrange to isolate C (M1) e.g., subtracting 32 or dividing the equation by 1.8 $C = \frac{5}{9}(F - 32) \quad \left(C = \frac{F - 32}{1.8}, C = 0.556F - 17.8)\right)$ A1 Note: If the answer is not written as an equation, award at most M1A0. (77 - 32)

(ii)
$$C = \left(\frac{77-32}{1.8}\right) 25$$
 (°C) A1
[3 marks]

(b) (i)
$$(1.8 \times 17 + 32 =) 62.6$$
 (°F) **A1**

(ii) recognizing that the "+32" does not affect the SD (M1) $(1.8 \times 9 =) 16.2$ (°F) A1

Note: Award *M0A0* for $1.8 \times 9 + 32$ (= 48.2).

[3 marks] [Total 6 marks] 4. attempt to use Euler

$y_{n+1} = y_n + 0.1 \log(x_n + y_n)$	(A1)
$y_1(=1+0.1 \times \log_{10}(1))=1$	(A1)
<i>y</i> ₂ =1.004139	(A1)

THEN

when x = 2 $y(2) \approx 1.61 (1.60536...)$

A1 [Total: 4 marks]

5.	(a)	y = 0.5x - 1 A1/	41
	Note	: Award A1 for $0.5x$ and A1 for -1 (or equivalent equation). Award at most A1A if answer is not presented as an equation.	0
			[2 marks]
	(b)	(6.857, 2.429) A1	41

Note:	If both answers are not correct to 4 sig figs, award at most A1A0 . Accept $x = 6.857$, $y = 2.429$.
	Award A1A0 for $\left(\frac{48}{7}, \frac{17}{7}\right)$. Award A0A1 for (2.429, 6.857).

[2 marks]

Note: Award marks as shown in the table below. Condone edges that do not extend to the sides of the graph or beyond the *x*-axis.

Correct edges	Incorrect edges	Marks
3	0	A2
3	1	A1A0
3	2 or more	A0A0
2	0	A1A0
2	1	A1A0
2	2 or more	A0A0
1	0	A1A0
1	1 or more	A0A0

[2 marks] [Total 6 marks]

2224-7201M

6. (a) attempt to substitute into geometric sequence formula for twelfth term OR at least three correct terms of the sequence (M1) $u_{12} = 40 \times 1.1^{12-1}$ OR 40, 44, 48.4, ... 114 (114.124...) A1 [2 marks]

(b) (i) attempt to substitute into geometric series formula **OR** a sum of at least the first three terms (M1) $40(1,1)^2 = 1$

$$S_{12} = \frac{40(1.1^{n_2}-1)}{1.1-1}$$
 OR $\sum_{1}^{12} (40 \times 1.1^{n-1})$ OR $40+44+48.4+...$

Note: Award *M1* for $u_1 = 40$ and r = 1.1 seen as part of a geometric series formula, or *M1* for sigma notation and their u_n formula (condone missing limits), or *M1* for the sum of at least the **correct** first three terms of the sequence.

$$S_{12} = 855 \quad (855.371...)$$

A1

(ii) finding
$$S_{24} = 3539.89...$$
 or attempt to find the sum between u_{13} and u_{24} (M1)

Note: Award *M1* for $S_{24} = 3539.89...$ or sigma notation that includes correct limits and their u_n formula or a substituted geometric series formula that includes 125.537... and n = 12 or a list of terms that includes at least the 13^{th} term and the 24^{th} term.

$$3539.89...-855.371... \text{ OR } \sum_{13}^{24} (40 \times 1.1^{n-1}) \text{ OR}$$
$$(S_{13 \text{ to } 24} =) \frac{125.537...(1.1^{12} - 1)}{1.1 - 1} \text{ OR } 125.537 + ... + 358.172...$$
(A1)
Note: Accept a calculation using $u_{13} = 125 \text{ or } 126.$

2680 (2684.52..., 2684, 2685) **A1**
Note: For
$$u_{13}$$
=125, the sum is 2673.03... and for u_{13} =126, the sum is 2694.41...

[5 marks] [Total: 7 marks]

7.	(a)	(i)	$m = ah^3$	(M1)	
			$64 = a \times 0.8^3 (\Rightarrow a = 125)$	(A1)	
	No	to: T	$m = 125h^3$ the final answer must be written as <i>m</i> in terms of <i>h</i> to award the final A1	_ A1	
		(ii)	$m = (125(0.75)^3 =) 52.7 $ (kg) (52.7343)	A1	[4 marks]
	(b)	EIT	HER (finding the height of the lion)		
		(22)	$0 = 125h^3$)		
		h =	∛1.76 (1.20736)	(A1)	
		E =	$k_1 h^2$ (seen anywhere)	(A1)	
		<i>k</i> =	$\frac{\left(\sqrt[3]{1.76}\right)^2}{0.8^2}$	(M1)	
		= 2.	28 (2.27769)	A1	
		OR (<i>m</i> :	(finding a formula for E in terms of m) = $125h^3$)		
		E =	k_1h^2	(A1)	
		E =	$k_2 m^{\frac{2}{3}}$	(A1)	
		<i>k</i> =	$\frac{220^{\frac{2}{3}}}{64^{\frac{2}{3}}}$	(M1)	
		= 2.	28 (2.27769)	A1	

[4 marks] [Total 8 marks]

A1

	[1 m
(b) correct intervals seen ($x \le 5$ (or $x < 5$) AND $x \ge 5$ (or $x > 5$))	A1
Note: The case of $x = 5$ must be included for this A1 to be awarded.	
attempt to add edges to $33 + x$	(M1)
(If $x < 5$ (or $x \le 5$) then repeat BC and) length is $33 + 2x$	A1
(If $x > 5$ (or $x \ge 5$) then repeat AB and AC and) length is $(33 + x + x)$	(5) = 38 + x
	A1
Note: If the intervals are not explicit, award at most <i>A0(M1)A1A1</i> .	
	[4 ma
(a) attempt to integrate by cubatitution or increation	[Total 5 ma
(a) attempt to integrate by substitution or inspection $4\ln 2x+3 +c$ OR $4\ln x+1.5 +c$	[Total 5 ma (M1) A1A1
(a) attempt to integrate by substitution or inspection $4\ln 2x+3 +c$ OR $4\ln x+1.5 +c$ Note: Award <i>M1</i> for $\ln(2x+3)$ or $\ln(x+1.5)$, <i>A1</i> for the 4 and <i>A1</i> for	[Total 5 ma (M1) A1A1
(a) attempt to integrate by substitution or inspection $4\ln 2x+3 +c$ OR $4\ln x+1.5 +c$ Note: Award <i>M1</i> for $\ln(2x+3)$ or $\ln(x+1.5)$, <i>A1</i> for the 4 and <i>A1</i> for <i>c</i> . The <i>A</i> marks can only be awarded if the <i>M</i> mark is awarded. Condone absence of modulus signs.	[Total 5 ma (M1) A1A1
(a) attempt to integrate by substitution or inspection $4\ln 2x+3 +c$ OR $4\ln x+1.5 +c$ Note: Award <i>M1</i> for $\ln(2x+3)$ or $\ln(x+1.5)$, <i>A1</i> for the 4 and <i>A1</i> for <i>c</i> . The <i>A</i> marks can only be awarded if the <i>M</i> mark is awarded. Condone absence of modulus signs.	[Total 5 ma (M1) A1A1 [3 mark
 (a) attempt to integrate by substitution or inspection 4ln 2x+3 +c OR 4ln x+1.5 +c Note: Award <i>M1</i> for ln(2x+3) or ln(x+1.5), <i>A1</i> for the 4 and <i>A1</i> for c. The <i>A</i> marks can only be awarded if the <i>M</i> mark is awarded. Condone absence of modulus signs. (b) recognizing that area is [4ln(2x+3)]₀⁶ 	[Total 5 ma (M1) A1A1 [3 mari (M1)
 (a) attempt to integrate by substitution or inspection 4ln 2x+3 +c OR 4ln x+1.5 +c Note: Award <i>M1</i> for ln(2x+3) or ln(x+1.5), <i>A1</i> for the 4 and <i>A1</i> for c. The <i>A</i> marks can only be awarded if the <i>M</i> mark is awarded. Condone absence of modulus signs. (b) recognizing that area is [4ln(2x+3)]₀⁶ = 4ln(15)-4ln(3) 	[Total 5 ma (M1) A1A1 [3 mark (M1) (A1)
 (a) attempt to integrate by substitution or inspection 4ln 2x+3 +c OR 4ln x+1.5 +c Note: Award <i>M1</i> for ln(2x+3) or ln(x+1.5), <i>A1</i> for the 4 and <i>A1</i> for c. The <i>A</i> marks can only be awarded if the <i>M</i> mark is awarded. Condone absence of modulus signs. (b) recognizing that area is [4ln(2x+3)]₀⁶ = 4ln(15) - 4ln(3) use of log laws for their expression 	[Total 5 ma (M1) A1A1 [3 mark (M1) (A1) (M1)

Award at most (M1)A1FTM0A0 if their answer from part (a) does not include ln.

[4 marks] [Total 7 marks]

(a) B and C

8.

(A1)

(A1)

10. (recognition that OB is a radius) (radius =) $\sqrt{5^2 + 8^2}$ (= $\sqrt{89}$) (A1)

EITHER (finding angle BOQ)

correct calculation for finding BÔA

$$\hat{BOA} = \arctan\left(\frac{8}{5}\right)$$
 OR $\tan \hat{BOA} = \frac{8}{5}$

expressing
$$\hat{BOQ}$$
 as $90 + \hat{BOA}$ (M1)
 $\hat{BOQ} = 90 + \arctan\left(\frac{8}{5}\right)$ OR $\hat{BOQ} = \frac{\pi}{2} + \arctan\left(\frac{8}{5}\right)$
 $\left(\hat{BOQ} = \right) 147.994^{\circ}...$ OR 2.58299...
substituting *their* radius and angle BOO correctly into arc length formula (M1)

substituting *their* radius and angle BOQ correctly into arc length formula (M1)

$$(\text{arc BQ} =) \frac{90 + \arctan\left(\frac{8}{5}\right)}{360} \times 2\pi\left(\sqrt{5^2 + 8^2}\right) \text{ OR } \left(\frac{\pi}{2} + \arctan\left(\frac{8}{5}\right)\right) \times \left(\sqrt{5^2 + 8^2}\right)$$
24.4 (m) (24.3679...) A1

OR (finding angle BOP)

correct calculation for finding angle $\, B \hat{O} P \,$

 $B\hat{O}P = \arctan\left(\frac{5}{8}\right) \ \mathbf{OR} \ \tan B\hat{O}P = \frac{5}{8}$

substituting *their* radius and \hat{BOP} correctly into arc length formula (M1)

(arc BP =)
$$\frac{\arctan\left(\frac{5}{8}\right)}{360} \times 2\pi\left(\sqrt{5^2 + 8^2}\right)$$

subtracting *their* arc BP from arc PQ (M1)
(arc BQ =) $\pi\sqrt{5^2 + 8^2} - \frac{\arctan\left(\frac{5}{8}\right)}{360} \times 2\pi\left(\sqrt{5^2 + 8^2}\right)$
24.4 (m) (24.3679...) A1

A1 [Total: 5 marks]

A1A1		$s2\alpha - sin2\alpha$ $n2\alpha \cos 2\alpha$	$ \left(\begin{array}{c} \cos t \\ \sin t \end{array} \right) $	(a)	۱.
nto a rotation matrix independently.	ng the correct matrix, A1 for substituting 2α into kwise rotation. These marks can be awarded inc a different symbol.	vard A1 for sel vard A1A0 for ondone the use	e: Awa Awa Con	Note	
[2 n	· · · · · · · · · · · · · · · · · · ·				L
M1A1	$ \begin{array}{l} \alpha & -\sin\alpha \\ \alpha & \cos\alpha \end{array} \\ 2\cos\alpha\sin\alpha \\ s^2\alpha - \sin^2\alpha \end{array} $	$ s\alpha - sin\alpha n\alpha cos\alpha) (cos2 \alpha - sin2 \alpha 2 cos \alpha sin \alpha $	$ \begin{pmatrix} \cos a \\ \sin a \\ = \begin{pmatrix} \cos a \\ 2 \end{pmatrix} $	(b)	F
try correct.	mpt to multiply matrices, e.g. at least one entry of	vard M1 for an	e: Awa	Note	
[2 n					
transformations) R1 equal) R1 AG	multiplication represents the composition of tran α are equivalent to a rotation of 2α ces are equal (so each of the entries are also eq α) cos(α)	(Because matrix two rotations so the two m $\sin(2\alpha) = 2\pi$	(i)	(c)	
A1	$-\sin^2 \alpha$	$\cos 2\alpha = \cos 2\alpha$	(ii)		
М1	with $1 - \sin^2 \alpha$	replacing co = $1 - \sin^2 \alpha$ -			
AG [4 n [Total 8 n		$=1-2\sin^2\alpha$			

2224 - 7201M

[2 marks]

A1

R1

A1

(A1)

(M1)

(A1)

A1

 $40 = 100 - 100 \times 2^{-t}$ (a) (A1) 0.737 (hours) (0.736965...)

Note: Accept 44.2 minutes.

12.

values of P are 50, 75, 87.5, 93.75 (A1) (b)

$$SS_{res} = (50 - 48)^2 + (75 - 74)^2 + (87.5 - 86)^2 + (93.75 - 91)^2$$
(M1)(A1)

- The sum of the square residuals is smaller so it is a better fit (C) (i)
 - (ii) Accept a valid argument in favour of model P or against the quadratic model. **R1**

e.g. any one of the following: quadratic has no asymptote quadratic will begin to go down quadratic will become negative quadratic might not go through (0, 0)model *P* is the manufacturer's model

[2 marks] [Total 8 marks]

[2 marks]

13. (a) (i)
$$\left(\left| z_1 \right| = \sqrt{4^2 + 5^2} = \right)$$
 6.40 (6.40312..., $\sqrt{41}$) **A1**

(ii)
$$(\arg(z_1) =) 0.896 \left(0.896055..., 51.3401...^\circ, \arctan\left(\frac{5}{4}\right) \right)$$

angle in triangle is 2-0.896055... **OR** $114.591^{\circ} - 51.3401...^{\circ}$ (b) use of area of triangle formula

$$\frac{1}{2} \times 6.40312... \times 3 \times \sin(2 - 0.896055...)$$

8.58 (8.57688...)

Note: Accept methods that use Cartesian form or vector product.

[4 marks] [Total 6 marks]

[2 marks] [Total 4 marks]

15. (a) (i)&(ii)

Note: Award **A1** for correct directions on eigenvectors, **A1** for correct trajectories, **A1** for correct arrows on trajectories.

[3 marks]

(b) for Y not to die out $y > \frac{1}{3}x$ (R1) as x = 252, y > 84 (M1) (minimum number of new animals is) 25 A1 Note: Award (R1)(M1)A0 for an unsupported 24.

> [3 marks] [Total 6 marks]

(M1)

(M1)

(M1)

A1

16. attempt to find gradient

EITHER

gradient of tangent
$$= -\tan 75^{\circ} (= -3.73205..., -2 - \sqrt{3})$$
 (A1)(A1)
Note: Award A1 for negative and A1 for $\tan 75^{\circ}$ (or equivalent).

OR

gradient of tangent =
$$\tan 105^{\circ}$$
 (= -3.73205...) (A2)

THEN

 $\frac{dy}{dx} = -5.5 \sin(1.1x)$ **Note:** Award **(A1)** for a labelled sketch of the derivative function.

equating derivative to their gradient $-5.5 \sin(1.1x) = -3.73205...$ **OR** line on graph

x = 0.6	577993 (A	1)
Note:	Award (A1)(M1)A0 for an answer of $x = 38.8$, from calculator being in degrees	3.
	Award A0M1A0 if " $\frac{d}{dx}(5\cos(1.1x)) = -3.73205$ " seen, but leading to an	
	incorrect <i>x</i> -value.	

height = $5\cos(1.1 \times 0.677993...)$ = 3.67 (m) (3.67274...)

[Total 8 marks]

2224 - 7201M

17. (a)
$$\begin{pmatrix} 0.25 & 0.25 \\ 0.1 & 0.1 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 (M1)

 Note: Accept equivalent methods including only using one line of the matrix.

 $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ (or any multiple)
 A1

 $\begin{pmatrix} 1 \\ -1 \end{pmatrix}$ (or any multiple)
 A1

 (b) $D'' = \begin{pmatrix} 0.65'' & 0 \\ 0 & 1 \end{pmatrix}$
 A1

 (c) $\begin{pmatrix} 1 & 5 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 0.65'' & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 5 \\ -1 & 2 \end{pmatrix}^{-1}$
 (M1)

 EITHER multiplying by the initial state
 (M1)

 $\begin{pmatrix} 1 & 5 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 0.65'' & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 5 \\ -1 & 2 \end{pmatrix}^{-1} \begin{pmatrix} 7000 \\ 0 \end{pmatrix}$
 (A1)

 $\begin{pmatrix} 1 & 5 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 0.65'' & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 2000 \\ 1000 \end{pmatrix}$
 (A1)

 $\begin{pmatrix} 1 & 5 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 2000 \times 0.65'' \\ 1000 \end{pmatrix}$
 (A1)

 $\begin{pmatrix} 2000 \times 0.65'' + 5000 \\ -2000 \times 0.65'' + 2000 \end{pmatrix}$
 (A1)

 Note: Award A0 if either term in the matrix is incorrect.
 (A1)

1

(M1)

A1

OR

$$\begin{bmatrix} 1 & 5 \\ -1 & 2 \end{bmatrix}^{-1} = \frac{1}{7} \begin{pmatrix} 2 & -5 \\ 1 & 1 \end{pmatrix}$$
 A1

$$\begin{pmatrix} 1 & 5 \\ -1 & 2 \end{pmatrix} \begin{pmatrix} 0.65^n & 0 \\ 0 & 1 \end{pmatrix} = \begin{pmatrix} 0.65^n & 5 \\ -0.65^n & 2 \end{pmatrix}$$

Note: The preceding *A1* marks can be awarded independently.

$$\frac{1}{7} \begin{pmatrix} 5+2 \times 0.65^n & 5-5 \times 0.65^n \\ 2-2 \times 0.65^n & 2+5 \times 0.65^n \end{pmatrix}$$
 A1

Note: Award *A0* if any term in the matrix is incorrect.

multiplying by the initial state

 $\frac{1}{7} \begin{pmatrix} 5+2 \times 0.65^n & 5-5 \times 0.65^n \\ 2-2 \times 0.65^n & 2+5 \times 0.65^n \end{pmatrix} \begin{pmatrix} 7000 \\ 0 \end{pmatrix}$

THEN

 $2000 - 2000 \times 0.65^n \ (= 2000 (1 - 0.65^n))$

Note: For the final *A1*, follow through within the question part from the bottom-left entry of their 2x2 matrix or the bottom entry of their 2x1 matrix but only if "in terms of *n*".

If any mistake in the matrices is seen that DOES NOT affect the correct final answer, do not award the penultimate *A1* mark.

[6 marks] [Total 9 marks]

- 20 -