Revision (31.01) [210 marks]

1. [Maximum mark: 20]

The function f is defined by $f(x)=\cos^2 x-3\sin^2 x, \;\; 0\leq x\leq \pi.$

(a) Find the roots of the equation f(x) = 0.

[5]

Markscheme

$$\cos^2 x - 3\sin^2 x = 0$$

valid attempt to reduce equation to one involving one trigonometric function (M1)

$$\frac{\sin^2x}{\cos^2x}=\frac{1}{3}$$
 or $1-\sin^2x-3\sin^2x=0$ or $\cos^2x-3\big(1-\cos^2x\big)=0$ or $\cos2x-1+\cos2x=0$

correct equation (A1)

$$an^2x=rac{1}{3}$$
 OR $\cos^2x=rac{3}{4}$ OR $\sin^2x=rac{1}{4}$ OR $\cos2x=rac{1}{2}$

$$\tan x=\pm \tfrac{1}{\sqrt{3}} \text{ or } \cos x=\pm \tfrac{\sqrt{3}}{2} \text{ or } \sin x=(\pm)\tfrac{1}{2} \text{ or } 2x=\tfrac{\pi}{3}\Big(,\,\tfrac{5\pi}{3}\Big)$$

$$x=rac{\pi}{6},\;x=rac{5\pi}{6}$$
 A1A1

Note: Award *M1A1A0A1A0* for candidates who omit the \pm (for tan or cos) and give only $x=\frac{\pi}{6}$.

Award M1A1A0A0A0 for candidates who omit the \pm (for tan or cos) and give only $x=30\degree$.

Award M1A1A1A1A0 for candidates who give both answers in degrees.

Award *M1A1A1A10* for candidates who give both correct answers in radians, but who include additional solutions outside the domain.

Award a maximum of M1A0A0A1A1 for correct answers with no working.

[5 marks]

(b.i) Find f(x).

[2]

[5]

Markscheme

attempt to use the chain rule (may be evidenced by at least one $\cos x \sin x$ term) (M1)

$$f'(x) = -2\cos x \sin x - 6\sin x \cos x = -8\sin x \cos x = -4\sin 2x$$

[2 marks]

(b.ii) Hence find the coordinates of the points on the graph of y=f(x) where $f\prime(x)=0$.

Markscheme

valid attempt to solve their f'(x) = 0 (M1)

At least 2 correct x-coordinates (may be seen in coordinates) (A1)

$$x = 0, \ x = \frac{\pi}{2}, \ x = \pi$$

Note: Accept additional correct solutions outside the domain.

Award A0 if any additional incorrect solutions are given.

correct coordinates (may be seen in graph for part (c))

A1A1A1

$$(0,1), (\pi,1), (\frac{\pi}{2}, -3)$$

Note: Award a maximum of *M1A1A1A1A0* if any additional solutions are given.

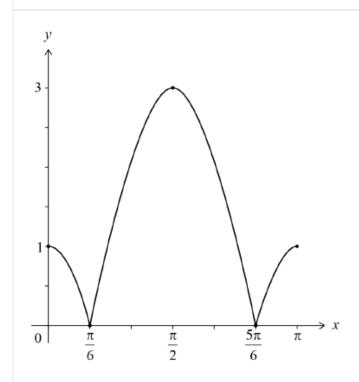
Note: If candidates do not find at least two correct x-coordinates, it is possible to award the appropriate final marks for their correct coordinates, such as **M1A0A0A1A0**.

[5 marks]

(c) Sketch the graph of y=|f(x)|, clearly showing the coordinates of any points where $f\prime(x)=0$ and any points where the graph meets the coordinate axes.

[4]

Markscheme



sharp points (cusps) at x-intercepts $\frac{\pi}{6}\,,\;\;\frac{5\pi}{6}$

[4 marks]

(d) Hence or otherwise, solve the inequality |f(x)|>1.

[4]

Markscheme

considers points of intersection of y=|f(x)| and y=1 on graph or algebraically *(M1)*

$$-(\cos^2 x - 3\sin^2 x) = 1$$
 or $-(1 - 4\sin^2 x) = 1$ or $-(4\cos^2 x - 3) = 1$ or $-(2\cos 2x - 1) = 1$

$$an^2x=1$$
 or $\sin^2x=rac{1}{2}$ or $\cos^2x=rac{1}{2}$ or $\cos2x=0$ (A1)

$$x=rac{\pi}{4},rac{3\pi}{4}$$
 (A1)

For
$$|f(x)| > 1$$

$$\frac{\pi}{4} < x < \frac{3\pi}{4}$$
 A

[4 marks]

2. [Maximum mark: 9]

Let
$$f\left(x
ight)=rac{x^{2}-10x+5}{x+1},\,x\in\mathbb{R},\,x
eq-1.$$

(a) Find the co-ordinates of all stationary points.

Markscheme

$$f'(x) = rac{(2x-10)(x+1) - \left(x^2 - 10x + 5
ight)1}{(x+1)^2}$$
 Ma

$$f'(x)=0\Rightarrow x^2+2x-15=0\Rightarrow (x+5)\,(x-3)=0$$
 M1

[4]

[1]

Stationary points are $(-5,\;-20)\;\mathrm{and}\;(3,\;-4)$

[4 marks]

(b) Write down the equation of the vertical asymptote.

Markscheme

$$x=-1$$
 A1

[1 mark]

(c)	With justification, state if each stationary point is a minimum, maximum or
	horizontal point of inflection.

[4]

Markscheme

Looking at the nature table

X		-5		-1		3		
f'(x)	+ve	0	-ve	undefined	-ve	0	+ <u>ve</u>	M1A1

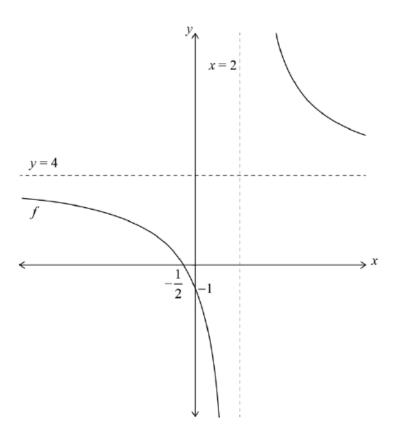
$$(-5,\,-20)$$
 is a max and $(3,\,-4)$ is a min $egin{array}{c}$ A1A1 \end{array}

[4 marks]

- - (a) Sketch the graph of y=f(x). On your sketch, indicate the values of any axis intercepts and label any asymptotes with their equations.

[5]

Markscheme



vertical asymptote x=2 sketched and labelled with correct equation $m{\it A1}$

horizontal asymptote y=4 sketched and labelled with correct equation $\hspace{1.5cm}$ A1

For an approximate rational function shape:

labelled intercepts $-\frac{1}{2}$ on x-axis, -1 on y-axis A1A1

two branches in correct opposite quadrants with correct asymptotic behaviour A1

Note: These marks may be awarded independently.

[5 marks]

(b) Write down the range of f.

Markscheme

y
eq 4 (or equivalent) \qquad A \qquad

[1 mark]

Consider the function $g(x)=x^2+bx+c$. The graph of g has an axis of symmetry at x=2. The two roots of g(x)=0 are $-\frac12$ and p, where $p\in\mathbb Q$.

(c) Show that
$$p=rac{9}{2}$$
. [1]

Markscheme

$$2+rac{5}{2}$$
 or $\left(-rac{1}{2}
ight)+2 imesrac{5}{2}$ or $rac{-rac{1}{2}+p}{2}=2$ or $-4=-p+rac{1}{2}$ at $p=rac{9}{2}$ as

[1 mark]

(d) Find the value of
$$b$$
 and the value of c .

[3]

Markscheme

METHOD 1

attempt to substitute both roots to form a quadratic (M1)

EITHER

$$ig(x+rac12ig)ig(x-rac92ig)$$
 or $x^2-ig(-rac12+rac92ig)x+ig(-rac12 imesrac92ig)$ $=x^2-4x-rac94$ atal $ig(b=-4,c=-rac94ig)$

Note: Award A1 for each correct value. They may be embedded or stated explicitly.

OR

$$(2x+1)(2x-9) = 4ig(x^2-4x-rac{9}{4}ig)$$
 $b=-4, c=-rac{9}{4}$ A1A1

Note: Award A1 for each correct value. They must be stated explicitly.

METHOD 2

$$-rac{b}{2}=2$$
 or $4+b=0\Rightarrow b=-4$ at

attempt to form a valid equation to find c using their b (M1)

$$\left(-rac{1}{2}
ight)^2+-4\left(-rac{1}{2}
ight)+c=0$$
 or $\left(rac{9}{2}
ight)^2+-4\left(rac{9}{2}
ight)+c=0$ $c=-rac{9}{4}$ A1

METHOD 3

attempt to form two valid equations in b and c (M1)

$$\left(-rac{1}{2}
ight)^2+b\left(-rac{1}{2}
ight)+c=0,\; \left(rac{9}{2}
ight)^2+b\left(rac{9}{2}
ight)+c=0$$
 $b=-4,c=-rac{9}{4}$ A1A1

METHOD 4

attempt to write g(x) in the form $\left(x-h\right)^2+k$ and substitute for $x,\,h$ and g(x) (M1)

$$ig(-rac{1}{2}-2ig)^2+k=0 \Rightarrow k=-rac{25}{4}$$
 $(x-2)^2-rac{25}{4}$ $=x^2-4x-rac{9}{4}$ A1A1 $ig(b=-4,c=-rac{9}{4}ig)$

Note: Award *A1* for each correct value. They may be embedded or stated explicitly.

[3 marks]

(e) Find the y-coordinate of the vertex of the graph of y=g(x).

[2]

Markscheme

attempt to substitute x=2 into their $g(x)\,$ OR

complete the square on their g(x) (may be seen in part (d)) (M1)

$$y=-rac{25}{4}$$
 As

[2 marks]

(f) Find the product of the solutions of the equation f(x)=g(x).

[4]

Markscheme

$$rac{4x+2}{x-2}=ig(x+rac{1}{2}ig)ig(x-rac{9}{2}ig)$$
 or $rac{4x+2}{x-2}=x^2-4x-rac{9}{4}$

attempt to form a cubic equation (M1)

EITHER

$$4x+2=(x-2)\big(x+\frac{1}{2}\big)\big(x-\frac{9}{2}\big)$$
 or $4x+2=\big(x^2-4x-\frac{9}{4}\big)(x-2)$ or

$$(x-2)ig(x+rac{1}{2}ig)ig(x-rac{9}{2}ig)-4x-2$$
 or $(x-2)ig(x^2-4x-rac{9}{4}ig)-4x-2$ $x^3+\ldots+rac{5}{2}(=0)$ or $4x^3+\ldots+10(=0)$ (A1)(A1)

Note: Award *(A1)* for each of the terms x^3 and $\frac{5}{2}$ or $4x^3$ and 10. Ignore extra terms.

product of roots
$$=$$
 $\left(\frac{(-1)^3 imes \frac{5}{2}}{1}\right)$ OR $\left(\frac{(-1)^3 imes 10}{4}\right)$ $= -\frac{5}{2}$ A1

OR

$$4ig(x+rac{1}{2}ig)=(x-2)ig(x+rac{1}{2}ig)ig(x-rac{9}{2}ig)$$
 $x=-rac{1}{2}$ (A1) or $4=x^2+\ldots+9\Rightarrow x^2+\ldots+5=0$

product of roots of quadratic is 5

product is therefore $-\frac{1}{2} imes 5$

$$=-rac{5}{2}$$
 A1

[4 marks]

[Maximum mark: 5] 4. Solve $3 imes 9^x + \overset{\cdot}{5} imes 3^x - 2 = 0.$

Markscheme

recognising a quadratic in 3^x

$$3 \times (3^x)^2 + 5 \times 3^x - 2 = 0$$

valid attempt to solve a quadratic equation (factorising, use of formula, completing square, or otherwise) (M1)

[5]

$$(3 imes 3^x-1)(3^x+2)=0$$
 OR $3^x=rac{-5\pm\sqrt{25+24}}{6}$ (or equivalent) (A1) $3^x=rac{1}{3}$ (or $3^x=-2$) (A1)

$$x=-1$$
 A1

Note: Award the final **A1** if candidate's answer includes x=-1 and $x=\log_3{(-2)}$. Award **A0** if other incorrect answers are given.

[5 marks]

5. [Maximum mark: 7]

A function g(x) is defined by $g(x)=2x^3-7x^2+dx-e$, where $d,\ e\in\mathbb{R}$.

 $lpha,\ eta$ and γ are the three roots of the equation g(x)=0 where $lpha,\ eta,\ \gamma\in\mathbb{R}.$

(a) Write down the value of $\alpha + \beta + \gamma$.

[1]

Markscheme

$$lpha + eta + \gamma = rac{7}{2}$$
 A1

[1 mark]

A function h(z) is defined by $h(z)=2z^5-11z^4+rz^3+sz^2+tz-20$, where $r,\ s,\ t\in\mathbb{R}.$

 $lpha,\ eta$ and γ are also roots of the equation h(z)=0.

It is given that h(z)=0 is satisfied by the complex number $z=p+3\mathrm{i}$.

(b) Show that p=1.

[3]

Markscheme

$$p-3i$$
 is also a root (seen anywhere) \qquad **A1**

recognition of 5 roots and attempt to sum these roots (M1)

$$p + 3i + p - 3i + \frac{7}{2}$$

$$p + 3i + p - 3i + \frac{7}{2} = \frac{11}{2}$$
 A

$$p=1$$
 AG

[3 marks]

It is now given that $hig(rac{1}{2}ig)=0$, and $lpha,\ eta\in\mathbb{Z}^+,\ lpha<eta$ and $\gamma\in\mathbb{Q}.$

(c.i) Find the value of the product $\alpha\beta$.

[2]

Markscheme

attempt to find product of 5 roots and equate to ± 10 (M1)

$$(1+3\mathrm{i})(1-3\mathrm{i})\tfrac{1}{2}\alpha\beta=10$$

$$lphaeta=2$$
 A1

[2 marks]

Write down the value of α and the value of β . (c.ii)

[1]

Markscheme

$$lpha=1$$
 and $eta=2$

[1 mark]

[Maximum mark: 5] 6.

Differentiate from first principles the function $f\left(x\right)=3x^{3}-x$.

[5]

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

METHOD 1

$$rac{f(x+h)-f(x)}{h}$$
 $=rac{\left(3(x+h)^3-(x+h)
ight)-\left(3x^3-x
ight)}{h}$ M1

$$=rac{3\left(x^{3}+3x^{2}h+3xh^{2}+h^{3}
ight) -x-h-3x^{3}+x}{h}$$
 (A1)

$$=rac{9x^2h+9xh^2+3h^3-h}{h}$$
 A1 cancelling h M1 $=9x^2+9xh+3h^2-1$

then
$$\lim_{h o 0} \left(9x^2 + 9xh + 3h^2 - 1
ight)$$

$$=9x^2-1$$
 A1

Note: Final A1 dependent on all previous marks.

METHOD 2

$$\begin{split} &\frac{f(x+h)-f(x)}{h} \\ &= \frac{\left(3(x+h)^3-(x+h)\right)-(3x^3-x)}{h} \quad \textit{M1} \\ &= \frac{3\left((x+h)^3-x^3\right)+(x-(x+h))}{h} \quad \textit{(A1)} \\ &= \frac{3h\left((x+h)^2+x(x+h)+x^2\right)-h}{h} \quad \textit{A1} \\ &= \frac{3h\left((x+h)^2+x(x+h)+x^2\right)-h}{h} \quad \textit{A1} \\ &= 3\left((x+h)^2+x\left(x+h\right)+x^2\right)-1 \\ &= \frac{3h\left((x+h)^2+x(x+h)+x^2\right)-h}{h} \quad \textit{A2} \\ &= \frac{3h\left((x+h)^2+x(x+h)+x^2\right)-h}{h} \quad \textit{A3} \\ &= \frac{3h\left((x+h)^2+x(x+h)+x^2\right)-h}{h} \quad \textit{A3} \\ &= \frac{3h\left((x+h)^2+x(x+h)+x^2\right)-h}{h} \quad \textit{A4} \\ &= \frac{3h$$

Note: Final A1 dependent on all previous marks.

[5 marks]

7. [Maximum mark: 6]

Let
$$P\left(x
ight)=2x^{4}-15x^{3}+ax^{2}+bx+c$$
 , where a , b , $c\in\mathbb{R}$

(a) Given that (x-5) is a factor of P(x), find a relationship between a,b and c.

Markscheme

*This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

attempt to substitute x=5 and set equal to zero, or use of long / synthetic division (M1)

$$2 imes 5^4 - 15 imes 5^3 + a imes 5^2 + 5b + c = 0$$
 A1

$$(\Rightarrow 25a + 5b + c = 625)$$

[2 marks]

(b) Given that $\left(x-5\right)^2$ is a factor of $P\left(x\right)$, write down the value of $P'\left(5\right)$.

Markscheme

0 A1

[1 mark]

Given that $(x-5)^2$ is a factor of $P\left(x\right)$, and that a=2 , find the values of b and c .

[3]

[1]

[2]

Markscheme

attempt to solve P'(5)=0 (M1)

$$\Rightarrow 8 \times 5^3 - 45 \times 5^2 + 4 \times 5 + b = 0$$

OR

$$\left(x^2-10x+25\right)\left(2x^2+\alpha x+\beta\right)=2x^4-15x^3+2x^2+bx+c$$
 (M1) comparing coefficients gives $lpha$ = 5, eta = 2

THEN

$$b = 105$$
 A1

$$\therefore c = 625 - 25 \times 2 - 525$$

$$c = 50$$
 A1

[3 marks]

8. [Maximum mark: 7]

The lengths of two of the sides in a triangle are 4 cm and 5 cm. Let θ be the angle between the two given sides. The triangle has an area of $\frac{5\sqrt{15}}{2}$ cm².

(a) Show that
$$\sin \theta = \frac{\sqrt{15}}{4}$$
. [1]

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

EITHER

$$rac{5\sqrt{15}}{2}=rac{1}{2} imes4 imes5\sin heta$$
 A1

OR

height of triangle is $\frac{5\sqrt{15}}{4}$ if using 4 as the base or $\sqrt{15}$ if using 5 as the base $\it A1$

THEN

$$\sin heta = rac{\sqrt{15}}{4}$$
 ag

(b) Find the two possible values for the length of the third side.

[6]

Markscheme

let the third side be x

$$x^2=4^2+5^2-2 imes4 imes5 imes \cos heta$$
 M1

valid attempt to find $\cos \theta$ (M1)

Note: Do not accept writing $\cos\left(\arcsin\left(\frac{\sqrt{15}}{4}\right)\right)$ as a valid method.

$$\cos\theta = \pm\sqrt{1 - \frac{15}{16}}$$

$$=\frac{1}{4}, -\frac{1}{4}$$
 A1A1

$$x^2=16+25-2 imes4 imes5 imes\pmrac{1}{4}$$

$$x=\sqrt{31}$$
 or $\sqrt{51}$ A1A1

[6 marks]

9. [Maximum mark: 7]

Solve the simultaneous equations

$$\log_2 6x = 1 + 2\log_2 y$$

$$1 + \log_6 x = \log_6 (15y - 25).$$

[7]

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

use of at least one "log rule" applied correctly for the first equation M1

$$\log_2 6x = \log_2 2 + 2\log_2 y$$

$$= \log_2 2 + \log_2 y^2$$

$$=\log_2\left(2y^2
ight)$$

$$\Rightarrow 6x = 2y^2$$
 A1

use of at least one "log rule" applied correctly for the second equation M1

$$\log_6(15y - 25) = 1 + \log_6 x$$

$$=\log_6 6 + \log_6 x$$

$$=\log_6 6x$$

$$\Rightarrow 15y - 25 = 6x$$
 A1

attempt to eliminate x (or y) from their two equations M1

$$2y^2 = 15y - 25$$

$$2y^2 - 15y + 25 = 0$$

$$(2y - 5)(y - 5) = 0$$

$$x=rac{25}{12},\,y=rac{5}{2},$$
 A1

or
$$x=rac{25}{3},\ y=5$$
 A1

Note: x, y values do not have to be "paired" to gain either of the final two A marks.

[7 marks]

10. [Maximum mark: 7]

The curve C is given by the equation $y=x\tan\left(\frac{\pi xy}{4}\right)$.

(a) At the point (1, 1) , show that
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2+\pi}{2-\pi}$$
.

[5]

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

attempt to differentiate implicitly M1

$$rac{\mathrm{d}y}{\mathrm{d}x} = x\sec^2\left(rac{\pi xy}{4}
ight)\left[\left(rac{\pi}{4}xrac{\mathrm{d}y}{\mathrm{d}x} + rac{\pi}{4}y
ight)
ight] + an\left(rac{\pi xy}{4}
ight)$$
 A1A1

Note: Award A1 for each term.

attempt to substitute x=1 , y=1 into their equation for $rac{\mathrm{d}y}{\mathrm{d}x}$ $\,$ M1 $\,$

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\pi}{2} \frac{\mathrm{d}y}{\mathrm{d}x} + \frac{\pi}{2} + 1$$

$$\frac{\mathrm{d}y}{\mathrm{d}x}\left(1-\frac{\pi}{2}\right)=\frac{\pi}{2}+1$$
 A1

$$rac{\mathrm{d}y}{\mathrm{d}x} = rac{2+\pi}{2-\pi}$$
 AG

[5 marks]

(b) Hence find the equation of the normal to ${\cal C}$ at the point (1, 1).

Markscheme

attempt to use gradient of normal $=\frac{-1}{\frac{\mathrm{d}y}{\mathrm{d}x}}$ (M1)

$$=\frac{\pi-2}{\pi+2}$$

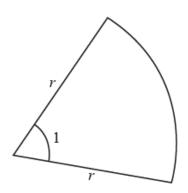
so equation of normal is $y-1=rac{\pi-2}{\pi+2}(x-1)$ or $y=rac{\pi-2}{\pi+2}x+rac{4}{\pi+2}$. A1

[2]

[2 marks]

11. [Maximum mark: 4]

A sector of a circle with radius r cm , where r > 0, is shown on the following diagram. The sector has an angle of 1 radian at the centre.



[4]

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

$$A = P$$

use of the correct formula for area and arc length (M1)

perimeter is $r\theta+2r$ (A1)

Note: A1 independent of previous M1.

$$rac{1}{2}r^{2}\left(1
ight) =r\left(1
ight) +2r$$
 A1

$$r^2 - 6r = 0$$

$$r=6 \text{ (as } r > 0)$$
 A1

Note: Do not award final **A1** if r=0 is included.

[4 marks]

12. [Maximum mark: 5]

Find the equation of the tangent to the curve $y=\mathrm{e}^{2x}\!-\!3x$ at the point where x=0.

[5]

Markscheme

* This question is from an exam for a previous syllabus, and may contain minor differences in marking or structure.

$$(x=0\Rightarrow)y=1$$
 (A1)

appreciate the need to find $\frac{\mathrm{d}y}{\mathrm{d}x}$ (M1)

$$\left(rac{\mathrm{d}y}{\mathrm{d}x}=
ight)2\mathrm{e}^{2x}-3$$
 A1

$$(x=0\Rightarrow)rac{\mathrm{d}y}{\mathrm{d}x}=-1$$
 A1

$$rac{y-1}{x-0} = -1 \ \ (y=1-x)$$
 A1

[5 marks]

13. [Maximum mark: 7]

A and B are acute angles such that $\cos A = rac{2}{3}$ and $\sin B = rac{1}{3}$.

Show that $\cos\left(2A+B\right)=-rac{2\sqrt{2}}{27}-rac{4\sqrt{5}}{27}.$ [7]

Markscheme

attempt to use $\cos{(2A+B)}=\cos{2A}\cos{B}-\sin{2A}\sin{B}$ (may be seen later) M1

attempt to use any double angle formulae (seen anywhere) M1

attempt to find either $\sin A$ or $\cos B$ (seen anywhere) M

$$\cos A = rac{2}{3} \Rightarrow \sin A \left(= \sqrt{1 - rac{4}{9}}
ight) = rac{\sqrt{5}}{3}$$
 (A1)

$$\sin B = rac{1}{3} \Rightarrow \cos B \left(= \sqrt{1 - rac{1}{9}} = rac{\sqrt{8}}{3}
ight) = rac{2\sqrt{2}}{3}$$
 A1

$$\cos 2A \ (= 2\cos^2 A - 1) = -\frac{1}{9}$$
 A1

$$\sin 2A \, (= 2 \sin A \cos A) = rac{4\sqrt{5}}{9}$$
 at

So
$$\cos{(2A+B)}=\left(-rac{1}{9}
ight)\left(rac{2\sqrt{2}}{3}
ight)-\left(rac{4\sqrt{5}}{9}
ight)\left(rac{1}{3}
ight)$$

$$=-rac{2\sqrt{2}}{27}-rac{4\sqrt{5}}{27}$$
 AG

[7 marks]

14. [Maximum mark: 4]

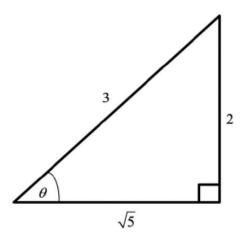
It is given that $\csc\theta=\frac{3}{2}$, where $\frac{\pi}{2}<\theta<\frac{3\pi}{2}$. Find the exact value of $\cot\theta$.

[4]

Markscheme

METHOD 1

attempt to use a right angled triangle M



correct placement of all three values and heta seen in the triangle (A1)

 $\cot heta < 0$ (since $\csc heta > 0$ puts heta in the second quadrant) $\,\,\,\,\,$ **R1**

$$\cot heta = -rac{\sqrt{5}}{2}$$
 A1

Note: Award *M1A1R0A0* for $\cot \theta = \frac{\sqrt{5}}{2}$ seen as the final answer

The *R1* should be awarded independently for a negative value only given as a final answer.

METHOD 2

Attempt to use $1+\cot^2 heta=\csc^2 heta$. Mi

$$1 + \cot^2 \theta = \frac{9}{4}$$

$$\cot^2\! heta = rac{5}{4}$$
 (A1)

$$\cot \theta = \pm \frac{\sqrt{5}}{2}$$

 $\cot heta < 0$ (since $\csc heta > 0$ puts heta in the second quadrant) $\,\,\,\,\,$ R1

$$\cot heta = -rac{\sqrt{5}}{2}$$
 A1

Note: Award *M1A1R0A0* for $\cot heta = \frac{\sqrt{5}}{2}$ seen as the final answer

The *R1* should be awarded independently for a negative value only given as a final answer.

METHOD 3

$$\sin \theta = \frac{2}{3}$$

attempt to use $\sin^2 \theta + \cos^2 \theta = 1$ M1

$$\frac{4}{9} + \cos^2 \theta = 1$$

$$\cos^2 \theta = \frac{5}{9}$$
 (A1)

$$\cos\theta = \pm \frac{\sqrt{5}}{3}$$

 $\cos heta < 0$ (since $\csc heta > 0$ puts heta in the second quadrant) heta 7

$$\cos\theta = -\frac{\sqrt{5}}{3}$$

$$\cot heta = -rac{\sqrt{5}}{2}$$
 A1

Note: Award *M1A1R0A0* for $\cot \theta = \frac{\sqrt{5}}{2}$ seen as the final answer

The *R1* should be awarded independently for a negative value only given as a final answer.

[4 marks]

15. [Maximum mark: 8]

Consider the quartic equation $z^4+4z^3+8z^2+80z+400=0,\ z\in\mathbb{C}.$

Two of the roots of this equation are $a+b{
m i}$ and $b+a{
m i}$, where $a,\ b\in\mathbb{Z}$.

Find the possible values of a.

Markscheme

METHOD 1

other two roots are $a-b{
m i}$ and $b-a{
m i}$

sum of roots = -4 and product of roots = 400 $\,$ A1

attempt to set sum of four roots equal to $-4\,\mathrm{or}\,4\,\mathrm{OR}$ attempt to set product of four roots equal to 400

$$a + bi + a - bi + b + ai + b - ai = -4$$

$$2a+2b=-4(\Rightarrow a+b=-2)$$
 A1

$$(a + bi)(a - bi)(b + ai)(b - ai) = 400$$

$$(a^2 + b^2)^2 = 400$$
 A1

$$a^2 + b^2 = 20$$

attempt to solve simultaneous equations (M1)

$$a=2$$
 or $a=-4$ A1A1

METHOD 2

other two roots are $a-b{
m i}$ and $b-a{
m i}$

$$(z-(a+b{
m i}))(z-(a-b{
m i}))(z-(b+a{
m i}))(z-(b-a{
m i}))(=0)$$
 A1

$$((z-a)^2+b^2)((z-b)^2+a^2)(=0)$$

$$(z^2-2az+a^2+b^2)(z^2-2bz+b^2+a^2)(=0)$$
 A1

Attempt to equate coefficient of z^3 and constant with the given quartic equation $\it M1$

$$-2a-2b=4$$
 and $\left(a^2+b^2
ight)^2=400$. At

attempt to solve simultaneous equations (M1)

$$a=2$$
 or $a=-4$ A1A1

[8 marks]

16. [Maximum mark: 7]

Solve the equation $2\cos^2x+5\sin x=4,\ 0\leq x\leq 2\pi$.

[7]

Markscheme

attempt to use $\cos^2 x = 1 - \sin^2 x$

 $2\sin^2 x - 5\sin x + 2 = 0$

EITHER

attempting to factorise M1

 $(2\sin x - 1)(\sin x - 2) \qquad \qquad \textbf{A1}$

OR

attempting to use the quadratic formula Ma

 $\sin\,x=rac{5\pm\sqrt{5^2-4 imes2 imes2}}{4}ig(=rac{5\pm3}{4}ig)$ A1

THEN

 $\sin x = \frac{1}{2} \qquad \text{(A1)}$

 $x=rac{\pi}{6},rac{5\pi}{6}$ A1A1

[7 marks]

17. [Maximum mark: 5]

The cubic equation $x^3-kx^2+3k=0$ where k>0 has roots $lpha,\ eta$ and lpha+eta.

Given that $lpha eta = -rac{k^2}{4}$, find the value of k .

[5]

Markscheme

$$\alpha + \beta + \alpha + \beta = k$$
 (A1)

$$\alpha + \beta = \frac{k}{2}$$

$$lphaeta(lpha+eta)=-3k$$
 (A1)

$$\left(-rac{k^2}{4}
ight)\left(rac{k}{2}
ight)=-3k\,\left(-rac{k^3}{8}=-3k
ight)$$
 M1

attempting to solve $-rac{k^3}{8}+3k=0$ (or equivalent) for k (M1)

$$k=2\sqrt{6} \; \Bigl(=\sqrt{24}\Bigr)(k>0)$$

Note: Award A0 for $k=\pm 2\sqrt{6} \; \Big(\pm \sqrt{24}\Big)$.

[5 marks]

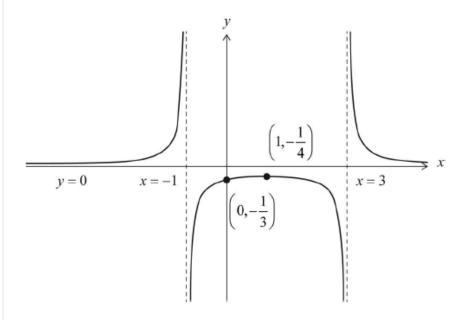
18. [Maximum mark: 20]

A function f is defined by $f(x)=rac{1}{x^2-2x-3}$, where $x\in\mathbb{R},\ x
eq -1,\ x
eq 3$.

(a) Sketch the curve y=f(x), clearly indicating any asymptotes with their equations. State the coordinates of any local maximum or minimum points and any points of intersection with the coordinate axes.

[6]

Markscheme



$$y$$
-intercept $\left(0,-\frac{1}{3}\right)$

Note: Accept an indication of $-\frac{1}{3}$ on the y-axis.

vertical asymptotes x=-1 and x=3

horizontal asymptote y=0

uses a valid method to find the x-coordinate of the local maximum point (M1)

Note: For example, uses the axis of symmetry or attempts to solve $f\prime(x)=0.$

local maximum point $\left(1,-\frac{1}{4}\right)$ $\hspace{1.5cm}$ A1

Note: Award (M1)A0 for a local maximum point at x=1 and coordinates not given.

three correct branches with correct asymptotic behaviour and the key features in approximately correct relative positions to each other

[6 marks]

A function g is defined by $g(x)=rac{1}{x^2-2x-3}$, where $x\in\mathbb{R},\;x>3$.

The inverse of g is g^{-1} .

(b.i) Show that
$$g^{-1}(x)=1+rac{\sqrt{4x^2+x}}{x}$$
. [6]

Markscheme

$$x=rac{1}{y^2-2y-3}$$
 Mi

Note: Award $\emph{M1}$ for interchanging x and y (this can be done at a later stage).

EITHER

attempts to complete the square M1

$$y^2 - 2y - 3 = (y - 1)^2 - 4$$
 A1

$$x = \frac{1}{(y-1)^2 - 4}$$

$$(y-1)^2-4=rac{1}{x}\Big((y-1)^2=4+rac{1}{x}\Big)$$
 A1

$$y-1=\pm\sqrt{4+rac{1}{x}}\left(=\pm\sqrt{rac{4x+1}{x}}
ight)$$

OR

attempts to solve $xy^2-2xy-3x-1=0$ for y

$$y=rac{-(-2x)\pm\sqrt{(-2x)^2+4x(3x+1)}}{2x}$$
 A

Note: Award *A1* even if - (in \pm) is missing

$$=rac{2x\pm\sqrt{16x^2+4x}}{2x}$$
 A1

THEN

$$=1\pmrac{\sqrt{4x^2+x}}{x}$$
 A1

$$y>3$$
 and hence $y=1-rac{\sqrt{4x^2+x}}{x}$ is rejected $\hspace{1.5cm}$ /81

Note: Award *R1* for concluding that the expression for y must have the '+' sign. The *R1* may be awarded earlier for using the condition x>3.

[1]

[7]

$$y=1+rac{\sqrt{4x^2+x}}{x}$$
 $g^{-1}(x)=1+rac{\sqrt{4x^2+x}}{x}$ AG

[6 marks]

(b.ii) State the domain of g^{-1} .

Markscheme

 ${\rm domain}\,{\rm of}\,g^{-1}\,{\rm is}\,x>0 \qquad {\it A} \, {\rm id}\, {\it A} \, {\it id}\, {\it id}$

[1 mark]

A function h is defined by $h(x)=rctanrac{x}{2}$, where $x\in\mathbb{R}.$

(c) Given that $(h\circ g)(a)=rac{\pi}{4}$, find the value of a.

Give your answer in the form $p+rac{q}{2}\sqrt{r}$, where $p,\ q,\ r\in\mathbb{Z}^+$.

Markscheme

attempts to find $(h \circ g)(a)$ (M1)

$$(h\circ g)(a)=rctan\Bigl(rac{g(a)}{2}\Bigr) \quad \Bigl((h\circ g)(a)=rctan\Bigl(rac{1}{2(a^2-2a-3)}\Bigr)\Bigr) \qquad$$
 (A1)

$$\arctan\left(\frac{g(a)}{2}\right) = \frac{\pi}{4} \left(\arctan\left(\frac{1}{2(a^2-2a-3)}\right) = \frac{\pi}{4}\right)$$

attempts to solve for g(a) $m{\it M1}$

$$ightarrow g(a) = 2 \; \left(rac{1}{(a^2-2a-3)} = 2
ight)$$

EITHER

$$\Rightarrow a = g^{-1}(2)$$
 A1

attempts to find their $g^{-1}(2)$

$$a = 1 + rac{\sqrt{4(2)^2 + 2}}{2}$$
 A1

Note: Award all available marks to this stage if x is used instead of a.

OR

$$\Rightarrow 2a^2-4a-7=0$$
 A1

attempts to solve their quadratic equation M1

$$a=rac{-(-4)\pm\sqrt{(-4)^2+4(2)(7)}}{4}~\left(=rac{4\pm\sqrt{72}}{4}
ight)$$
 at

Note: Award all available marks to this stage if x is used instead of a.

THEN

$$a=1+rac{3}{2}\sqrt{2}$$
 (as $a>3$) \qquad A1

$$(p=1, q=3, r=2)$$

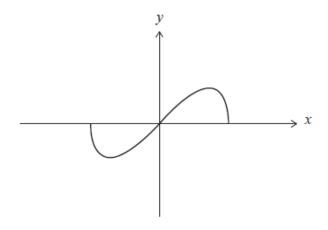
Note: Award A1 for $a=1+\frac{1}{2}\sqrt{18}\;(p=1,\;q=1,\;r=18)$

[7 marks]

19. [Maximum mark: 8]

A function f is defined by $f(x)=x\sqrt{1-x^2}$ where $-1\leq x\leq 1$.

The graph of y=f(x) is shown below.



(a) Show that f is an odd function.

Markscheme

attempts to replace x with -x

$$f(-x) = -x\sqrt{1 - (-x)^2}$$

$$=-x\sqrt{1-\left(-x
ight) ^{2}}(=-f(x))$$
 A1

Note: Award *M1A1* for an attempt to calculate both f(-x) and -f(-x) independently, showing that they are equal.

[2]

Note: Award *M1A0* for a graphical approach including evidence that **either** the graph is invariant after rotation by 180° about the origin **or** the graph is invariant after a reflection in the y-axis and then in the x-axis (or vice versa).

so f is an odd function AG

[2 marks]

(b) The range of f is $a \leq y \leq b$, where $a, \ b \in \mathbb{R}$.

Find the value of a and the value of b.

[6]

Markscheme

attempts both product rule and chain rule differentiation to find $f\prime(x)$

$$f'(x) = x imes rac{1}{2} imes (-2x) imes \left(1 - x^2
ight)^{-rac{1}{2}} + \left(1 - x^2
ight)^{rac{1}{2}} imes 1 \left(= \sqrt{1 - x^2} - rac{x^2}{\sqrt{1 - x^2}}
ight)^{-rac{1}{2}}$$
 A1

$$=\frac{1-2x^2}{\sqrt{1-x^2}}$$

sets their $f\prime(x)=0$ M1

$$\Rightarrow x = \pm \frac{1}{\sqrt{2}}$$
 A1

attempts to find at least one of $f\left(\pm \frac{1}{\sqrt{2}}\right)$ (M1)

Note: Award **M1** for an attempt to evaluate f(x) at least at one of their $f\prime(x)=0$ roots.

$$a=-rac{1}{2}$$
 and $b=rac{1}{2}$ \qquad A1

Note: Award **A1** for $-\frac{1}{2} \leq y \leq \frac{1}{2}$.

[6 marks]

20. [Maximum mark: 19]

(a) Show that
$$\cot 2\theta = \frac{1-\tan^2 \theta}{2\tan \theta}$$
. [1]

Markscheme

stating the relationship between \cot and \tan and stating the identity for $\tan 2 heta$. Mix

$$\cot 2 heta = rac{1}{ an 2 heta}$$
 and $an 2 heta = rac{2 an heta}{1- an^2 heta}$

$$\Rightarrow \cot 2 heta = rac{1- an^2 heta}{2 an heta}$$
 ag

[1 mark]

(b) Verify that
$$x=\tan\theta$$
 and $x=-\cot\theta$ satisfy the equation
$$x^2+(2\cot2\theta)x-1=0. \eqno(7)$$

Markscheme

METHOD 1

attempting to substitute an heta for x and using the result from (a) $ag{M1}$

LHS =
$$an^2 heta + 2 an heta \left(rac{1 - an^2 heta}{2 an heta}
ight) - 1$$
 A1

$$an^2 heta + 1 - an^2 heta - 1 = 0$$
(= RHS) A1

so x= an heta satisfies the equation ${\it AG}$

LHS =
$$\cot^2 heta - 2 \cot heta \left(rac{1 - an^2 heta}{2 an heta}
ight) - 1$$
 A1

$$=rac{1}{ an^2 heta}-\left(rac{1- an^2 heta}{ an^2 heta}
ight)-1$$
 A1

$$rac{1}{ an^2 heta} - rac{1}{ an^2 heta} + 1 - 1 = 0$$
(= RHS) *A1*

so $x=-\cot heta$ satisfies the equation ${\it AG}$

METHOD 2

let lpha= an heta and $eta=-\cot heta$

attempting to find the sum of roots M1

$$lpha+eta= an heta-rac{1}{ an heta}$$

$$=rac{ an^2 heta-1}{ an heta} \quad extbf{A1}$$

$$=-2\cot2 heta ext{ (from part (a))} \quad extbf{A1}$$

attempting to find the product of roots M1

$$lphaeta= an heta imes(-\cot heta)$$
 A1

=-1 **A1**

the coefficient of x and the constant term in the quadratic are $2\cot 2\theta$ and -1 respectively $\it R1$

hence the two roots are lpha= an heta and $eta=-\cot heta$

[7 marks]

(c) Hence, or otherwise, show that the exact value of $anrac{\pi}{12}=2-\sqrt{3}$.

[5]

Markscheme

METHOD 1

$$x= anrac{\pi}{12}$$
 and $x=-\cotrac{\pi}{12}$ are roots of $x^2+ig(2\cotrac{\pi}{6}ig)x-1=0$. R1

Note: Award *R1* if only $x= anrac{\pi}{12}$ is stated as a root of $x^2+ig(2\cotrac{\pi}{6}ig)x-1=0$.

$$x^2+2\sqrt{3}x-1=0$$
 at

attempting to solve **their** quadratic equation *M1*

$$x=-\sqrt{3}\pm 2$$
 A1

$$anrac{\pi}{12}>0$$
 $(-\cotrac{\pi}{12}<0)$

so
$$an rac{\pi}{12} = 2 - \sqrt{3}$$
 AG

METHOD 2

attempting to substitute $heta=rac{\pi}{12}$ into the identity for an 2 heta

$$\tan \frac{\pi}{6} = \frac{2 \tan \frac{\pi}{12}}{1 - \tan^2 \frac{\pi}{12}}$$

$$an^2rac{\pi}{12} + 2\sqrt{3} anrac{\pi}{12} - 1 = 0$$
 A1

attempting to solve **their** quadratic equation *M1*

$$anrac{\pi}{12} = -\sqrt{3}\pm 2$$
 A1

$$anrac{\pi}{12}>0$$
 R1

so
$$anrac{\pi}{12}=2-\sqrt{3}$$
 AG

[5 marks]

(d) Using the results from parts (b) and (c) find the exact value of $anrac{\pi}{24}-\cotrac{\pi}{24}$

[6]

.

Give your answer in the form $a+b\sqrt{3}$ where a , $b\in\mathbb{Z}$.

Markscheme

 $anrac{\pi}{24}-\cotrac{\pi}{24}$ is the sum of the roots of $x^2+ig(2\cotrac{\pi}{12}ig)x-1=0$. R1

$$anrac{\pi}{24}-\cotrac{\pi}{24}=-2\cotrac{\pi}{12}$$
 A1

$$=rac{-2}{2-\sqrt{3}}$$
 A1

attempting to rationalise **their** denominator (M1)

$$=-4-2\sqrt{3}$$
 A1A1

[6 marks]

21. [Maximum mark: 8]

A function f is defined by $f(x)=rac{2x-1}{x+1}$, where $x\in\mathbb{R},\ x
eq -1.$

The graph of y=f(x) has a vertical asymptote and a horizontal asymptote.

(a.i) Write down the equation of the vertical asymptote.

[1]

Markscheme

$$x=-1$$
 A1

[1 mark]

(a.ii) Write down the equation of the horizontal asymptote.

[1]

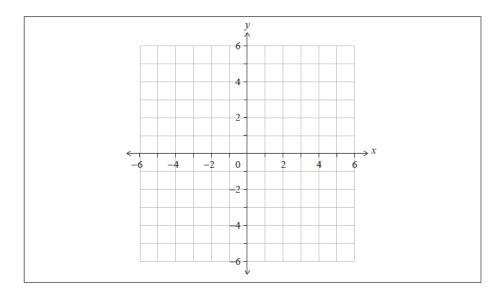
Markscheme

$$y=2$$
 A:

[1 mark]

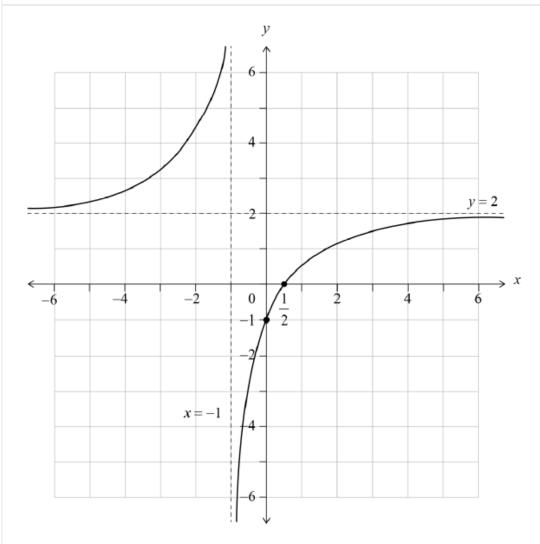
(b) On the set of axes below, sketch the graph of y=f(x).

On your sketch, clearly indicate the asymptotes and the position of any points of intersection with the axes.



[3]

Markscheme



rational function shape with two branches in opposite quadrants, with two correctly positioned asymptotes and asymptotic behaviour shown

A1

axes intercepts clearly shown at $x=rac{1}{2}$ and y=-1 $\hspace{1.5cm}$ A1A1

[3 marks]

(c) Hence, solve the inequality
$$0<rac{2x-1}{x+1}<2$$
.

[1]

Markscheme

$$x>rac{1}{2}$$
 A1

Note: Accept correct alternative correct notation, such as $\left(\frac{1}{2}, \infty\right)$ and $\left]\frac{1}{2}, \infty\right[$.

[1 mark]

(d) Solve the inequality $0<rac{2|x|-1}{|x|+1}<2$.

[2]

Markscheme

EITHER

attempts to sketch $y=rac{2|x|-1}{|x|+1}$ (M1)

OR

attempts to solve 2|x|-1=0 (M1)

Note: Award the *(M1)* if $x=\frac{1}{2}$ and $x=-\frac{1}{2}$ are identified.

THEN

$$x<-rac{1}{2}$$
 or $x>rac{1}{2}$ \qquad A1

Note: Accept the use of a comma. Condone the use of 'and'. Accept correct alternative notation.

[2 marks]

22. [Maximum mark: 5]

Solve the equation $\log_3 \sqrt{x} = rac{1}{2\log_2 3} + \log_3 ig(4x^3ig)$, where x>0.

Markscheme

attempt to use change the base (M1)

$$\log_3 \sqrt{x} = \frac{\log_3 2}{2} + \log_3 (4x^3)$$

attempt to use the power rule (M1)

$$\log_3 \sqrt{x} = \log_3 \sqrt{2} + \log_3 (4x^3)$$

attempt to use product or quotient rule for logs, $\ln a + \ln b = \ln ab$ (M1)

$$\log_3 \sqrt{x} = \log_3 \left(4\sqrt{2}x^3\right)$$

Note: The *M* marks are for attempting to use the relevant log rule and may be applied in any order and at any time during the attempt seen.

[5]

$$\sqrt{x} = 4\sqrt{2}x^3$$

$$x = 32x^{6}$$

$$x^5=rac{1}{32}$$
 (A1)

$$x=rac{1}{2}$$
 A1

[5 marks]

23. [Maximum mark: 7]

The equation $3px^2+2px+1=p$ has two real, distinct roots.

(a) Find the possible values for p.

Markscheme

attempt to use discriminant $b^2 - 4ac(>0)$

$$(2p)^2 - 4(3p)(1-p)(>0)$$

$$16p^2 - 12p(>0)$$
 (A1)

$$p(4p-3)(>0)$$

attempt to find critical values $\left(p=0,\ p=\frac{3}{4}\right)$

recognition that discriminant > 0 (M1)

$$p < 0$$
 or $p > rac{3}{4}$

Note: Condone 'or' replaced with 'and', a comma, or no separator

[5 marks]

(b) Consider the case when p=4. The roots of the equation can be expressed in the form $x=rac{a\pm\sqrt{13}}{6}$, where $a\in\mathbb{Z}$. Find the value of a.

[2]

Markscheme

$$p = 4 \Rightarrow 12x^2 + 8x - 3 = 0$$

valid attempt to use $x=rac{-b\pm\sqrt{b^2-4ac}}{2a}$ (or equivalent) $m{\it M1}$

$$x=rac{-8\pm\sqrt{208}}{24}$$

$$x=rac{-2\pm\sqrt{13}}{6}$$

$$a=-2$$
 A1

[2 marks]

24. [Maximum mark: 7]

Consider the curve with equation $\left(x^2+y^2\right)y^2=4x^2$ where $x\geq 0$ and -2< y<2.

Show that the curve has no local maximum or local minimum points for x>0.

[7]

Markscheme

attempt at implicit differentiation, including use of the product rule

(M1)

EITHER

$$\left(2x+2yrac{\mathrm{d}y}{\mathrm{d}x}
ight)y^2+\left(x^2+y^2
ight)2yrac{\mathrm{d}y}{\mathrm{d}x}=8x$$
 A1A1A1

Note: Award **A1** for each of $\Big(2x+2yrac{\mathrm{d}y}{\mathrm{d}x}\Big)y^2,\ \Big(x^2+y^2\Big)2yrac{\mathrm{d}y}{\mathrm{d}x}$ and 8x

OR

$$x^2y^2 + y^4 = 4x^2$$

$$2xy^2+2x^2yrac{\mathrm{d}y}{\mathrm{d}x}+4y^3rac{\mathrm{d}y}{\mathrm{d}x}=8x$$
 АТАТАТ

Note: Award **A1** for each of $2xy^2+2x^2y\frac{\mathrm{d}y}{\mathrm{d}x},\ 4y^3\frac{\mathrm{d}y}{\mathrm{d}x}$ and 8x.

THEN

at a local maximum or minimum point, $rac{\mathrm{d}y}{\mathrm{d}x}=0$ (M1)

$$2xy^2 = 8x$$

$$x=0$$
 or $y^2=4(\Rightarrow y=\pm 2)$

Note: Award $\emph{A0}$ for x=0 or y=2

since x>0 and -2 < y < 2 there are no solutions $\ensuremath{\it R1}$

hence there are no local maximum or minimum points AG

[7 marks]

25. [Maximum mark: 7]

Consider the equation $z^4+pz^3+54z^2-108z+80=0$ where $z\in\mathbb{C}$ and $p\in\mathbb{R}$.

Three of the roots of the equation are $3+i,\ lpha$ and $lpha^2$, where $lpha\in\mathbb{R}.$

(a) By considering the product of all the roots of the equation, find the value of α .

[4]

Markscheme

product of roots = 80 (A1)

3 - i is a root (A1)

attempt to set up an equation involving the product of their four roots and ± 80 (M1)

$$(3+i)(3-i)\alpha^3 = 80 \Rightarrow 10\alpha^3 = 80$$

lpha=2

[4 marks]

(b) Find the value of p.

[3]

Markscheme

METHOD 1

 $\operatorname{sum}\operatorname{of}\operatorname{roots}=-p \tag{A1)}$

$$-p = 3 + i + 3 - i + 2 + 4$$
 (M1)

Note: Accept $p=3+\mathrm{i}+3-\mathrm{i}+2+4$ for (M1)

$$p=-12$$

METHOD 2

$$(z-(3+i))(z-(3-i))(z-2)(z-4)$$
 (M1)

$$((z-3)-{
m i})((z-3)+{
m i})(z-2)(z-4)$$
 (A1) $(z^2-6z+10)(z^2-6z+8)=z^4-12z^3+\dots$ $p=-12$ A1

[3 marks]

© International Baccalaureate Organization, 2025