Revision (31.01) [210 marks]

- 1. [Maximum mark: 20] The function f is defined by $f(x) = \cos^2 x 3 \, \sin^2 x, \;\; 0 \le x \le π.$
 - (a) Find the roots of the equation f(x) = 0. [5]

(b.i) Find
$$f'(x)$$
. [2]

- (b.ii) Hence find the coordinates of the points on the graph of y = f(x) where $f\prime(x) = 0.$ [5]
- (c) Sketch the graph of y = |f(x)|, clearly showing the coordinates of any points where f'(x) = 0 and any points where the graph meets the coordinate axes. [4]
- (d) Hence or otherwise, solve the inequality |f(x)| > 1. [4]

2. [Maximum mark: 9]

Let
$$f(x)=rac{x^2-10x+5}{x+1},\,x\in\mathbb{R},\,x
eq-1.$$

(a)	Find the co-ordinates of all stationary points.	[4]
(b)	Write down the equation of the vertical asymptote.	[1]
(c)	With justification, state if each stationary point is a minimum, maximum or horizontal point of inflection.	[4]

3. [Maximum mark: 16] Consider the function $f(x)=rac{4x+2}{x-2}, \; x eq 2.$

(a) Sketch the graph of y = f(x). On your sketch, indicate the values of any axis intercepts and label any asymptotes with their equations. [5]

[1]

(b) Write down the range of f.

Consider the function $g(x) = x^2 + bx + c$. The graph of g has an axis of symmetry at x=2.

The two roots of g(x)=0 are $-rac{1}{2}$ and p, where $p\in\mathbb{Q}.$

(c) Show that
$$p=rac{9}{2}.$$
 [1]

(d) Find the value of
$$b$$
 and the value of c . [3]

(e) Find the
$$y$$
-coordinate of the vertex of the graph of $y = g(x)$. [2]

(f) Find the product of the solutions of the equation
$$f(x) = g(x).$$
 [4]

4. [Maximum mark: 5]
Solve
$$3 imes 9^x + 5 imes 3^x - 2 = 0.$$
 [5]

5. [Maximum mark: 7] A function g(x) is defined by $g(x)=2x^3-7x^2+dx-e$, where $d,\ e\in\mathbb{R}.$

 $lpha,\ eta$ and γ are the three roots of the equation g(x)=0 where $lpha,\ eta,\ \gamma\in\mathbb{R}.$

(a) Write down the value of $\alpha + \beta + \gamma$. [1]

A function h(z) is defined by $h(z)=2z^5-11z^4+rz^3+sz^2+tz-20$, where $r,\ s,\ t\in\mathbb{R}.$ $lpha,\ eta$ and γ are also roots of the equation h(z)=0.

It is given that h(z)=0 is satisfied by the complex number $z=p+3{
m i}.$

(b) Show that
$$p=1.$$
 [3]

It is now given that $hig(rac{1}{2}ig)=0$, and $lpha,\ eta\in\mathbb{Z}^+,\ lpha<eta$ and $\gamma\in\mathbb{Q}.$

(c.i) Find the value of the product $\alpha\beta$. [2]

(c.ii) Write down the value of
$$\alpha$$
 and the value of β . [1]

6. [Maximum mark: 5] Differentiate from first principles the function $f(x) = 3x^3 - x$. [5]

7. [Maximum mark: 6]
Let
$$P\left(x
ight)=2x^{4}-15x^{3}+ax^{2}+bx+c$$
, where a , b , $c\in\mathbb{R}$

(a) Given that
$$(x - 5)$$
 is a factor of $P(x)$, find a relationship between a, b and c . [2]

(b) Given that
$$(x-5)^2$$
 is a factor of $P\left(x
ight)$, write down the value of $P'\left(5
ight)$. [1]

(c) Given that
$$\left(x-5
ight)^2$$
 is a factor of $P\left(x
ight)$, and that $a=2$, find the values of b and c . [3]

8. [Maximum mark: 7]

The lengths of two of the sides in a triangle are 4 cm and 5 cm. Let θ be the angle between the two given sides. The triangle has an area of $\frac{5\sqrt{15}}{2}$ cm².

(a) Show that
$$\sin \theta = \frac{\sqrt{15}}{4}$$
. [1]

- (b) Find the two possible values for the length of the third side. [6]
- **9.** [Maximum mark: 7] Solve the simultaneous equations

$$\log_2 6x = 1 + 2\log_2 y$$

1 + log_6 x = log_6 (15y - 25). [7]

10. [Maximum mark: 7] The curve C is given by the equation $y = x \tan\left(\frac{\pi x y}{4}\right)$.

(a) At the point (1, 1), show that
$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{2+\pi}{2-\pi}$$
. [5]

- (b) Hence find the equation of the normal to C at the point (1, 1). [2]
- **11.** [Maximum mark: 4]

A sector of a circle with radius $r \operatorname{cm}$, where r > 0, is shown on the following diagram.

The sector has an angle of 1 radian at the centre.

[4]

Let the area of the sector be $A \operatorname{cm}^2$ and the perimeter be $P \operatorname{cm}$. Given that A = P, find the value of r.

- 12. [Maximum mark: 5] Find the equation of the tangent to the curve $y = e^{2x} - 3x$ at the point where x = 0. [5]
- 13. [Maximum mark: 7] A and B are acute angles such that $\cos A = \frac{2}{3}$ and $\sin B = \frac{1}{3}$.

Show that
$$\cos(2A+B) = -\frac{2\sqrt{2}}{27} - \frac{4\sqrt{5}}{27}$$
. [7]

14. [Maximum mark: 4]

It is given that $\operatorname{cosec} \theta = \frac{3}{2}$, where $\frac{\pi}{2} < \theta < \frac{3\pi}{2}$. Find the exact value of $\cot \theta$. [4]

15. [Maximum mark: 8]

Consider the quartic equation

 $z^4+4z^3+8z^2+80z+400=0,\ z\in\mathbb{C}.$

Two of the roots of this equation are $a+b{
m i}$ and $b+a{
m i}$, where $a,\ b\in\mathbb{Z}.$

Find the possible values of a.

[8]

[6]

- 16. [Maximum mark: 7] Solve the equation $2\cos^2 x + 5\sin x = 4, \ 0 \le x \le 2\pi.$ [7]
- 17. [Maximum mark: 5] The cubic equation $x^3-kx^2+3k=0$ where k>0 has roots $lpha,\ eta$ and lpha+eta.

Given that
$$lphaeta=-rac{k^2}{4}$$
 , find the value of k . [5]

18. [Maximum mark: 20]

A function f is defined by $f(x)=rac{1}{x^2-2x-3}$, where $x\in \mathbb{R}, \; x
eq -1, \; x
eq 3.$

(a) Sketch the curve y = f(x), clearly indicating any asymptotes with their equations. State the coordinates of any local maximum or minimum points and any points of intersection with the coordinate axes.

A function g is defined by $g(x)=rac{1}{x^2-2x-3}$, where $x\in\mathbb{R},\;x>3.$

The inverse of g is g^{-1} .

(b.i) Show that
$$g^{-1}(x) = 1 + rac{\sqrt{4x^2 + x}}{x}$$
. [6]

(b.ii) State the domain of
$$g^{-1}$$
. [1]

A function h is defined by $h(x) = rctanrac{x}{2}$, where $x \in \mathbb{R}.$

- (c) Given that $(h \circ g)(a) = \frac{\pi}{4}$, find the value of a. Give your answer in the form $p + \frac{q}{2}\sqrt{r}$, where $p, \ q, \ r \in \mathbb{Z}^+$. [7]
- 19. [Maximum mark: 8] A function f is defined by $f(x) = x\sqrt{1-x^2}$ where $-1 \leq x \leq 1$.

The graph of y=f(x) is shown below.

- (a) Show that f is an odd function. [2]
- (b) The range of f is $a\leq y\leq b$, where $a,\;b\in\mathbb{R}.$

Find the value of *a* and the value of *b*. [6]

20. [Maximum mark: 19]

(a) Show that
$$\cot 2 heta = rac{1- an^2 heta}{2 an heta}.$$
 [1]

(b) Verify that
$$x= an heta$$
 and $x=-\cot heta$ satisfy the equation $x^2+(2\cot2 heta)x-1=0.$ [7]

(c) Hence, or otherwise, show that the exact value of
$$an \frac{\pi}{12} = 2 - \sqrt{3}.$$
 [5]

(d) Using the results from parts (b) and (c) find the exact value of $\tan \frac{\pi}{24} - \cot \frac{\pi}{24}$.

Give your answer in the form
$$a+b\sqrt{3}$$
 where $a,b\in\mathbb{Z}.$ [6]

21. [Maximum mark: 8] A function f is defined by $f(x)=rac{2x-1}{x+1}$, where $x\in\mathbb{R},\;x
eq-1.$

The graph of y=f(x) has a vertical asymptote and a horizontal asymptote.

- (a.i) Write down the equation of the vertical asymptote. [1]
- (a.ii) Write down the equation of the horizontal asymptote. [1]
- (b) On the set of axes below, sketch the graph of y=f(x).

On your sketch, clearly indicate the asymptotes and the position of any points of intersection with the axes.

(c) Hence, solve the inequality
$$0 < rac{2x-1}{x+1} < 2.$$
 [1]

(d) Solve the inequality
$$0 < rac{2|x|-1}{|x|+1} < 2.$$
 [2]

22. [Maximum mark: 5]
Solve the equation
$$\log_3\sqrt{x}=rac{1}{2\log_23}+\log_3ig(4x^3ig)$$
 , where $x>0.$ [5]

23. [Maximum mark: 7] The equation
$$3px^2 + 2px + 1 = p$$
 has two real, distinct roots.

- (a) Find the possible values for *p*. [5]
- (b) Consider the case when p=4. The roots of the equation can be expressed in the form $x=rac{a\pm\sqrt{13}}{6}$, where $a\in\mathbb{Z}$. Find the value of a. [2]

24. [Maximum mark: 7]

Consider the curve with equation $ig(x^2+y^2ig)y^2=4x^2$ where $x\geq 0$ and -2< y<2.

Show that the curve has no local maximum or local minimum points for x > 0.

[7]

25. [Maximum mark: 7]

Consider the equation $z^4+pz^3+54z^2-108z+80=0$ where $z\in\mathbb{C}$ and $p\in\mathbb{R}.$

Three of the roots of the equation are $3+\mathrm{i},\ lpha$ and $lpha^2$, where $lpha\in\mathbb{R}.$

- (a) By considering the product of all the roots of the equation, find the value of α . [4]
- (b) Find the value of p.

[3]

© International Baccalaureate Organization, 2025