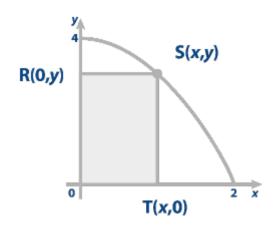
Optimization [63 marks]

1. [Maximum mark: 16]

The following diagram shows the graph of $y = 4 - x^2$, $0 \le x \le 2$ and rectangle ORST. The rectangle has a vertex at the origin O, a vertex on the y-axis at the point R(0, y), a vertex on the x-axis at the point T(x, 0) and a vertex at point S(x, y) on the graph.

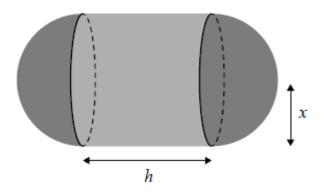


Let P represent the perimeter of rectangle ORST.

(a)	Show that $P=-2x^2+2x+8$.	[2]	
(b)	Find the dimensions of rectangle ORST that has maximum perimeter and determine the value of the maximum perimeter.	[6]	
Let A represent the area of rectangle ORST .			
(c)	Find an expression for A in terms of x .	[2]	
(c) (d)	Find an expression for A in terms of $x.$ Find the dimensions of rectangle ORST that has maximum	[2]	
. ,		[2]	

2. [Maximum mark: 14]

The solid shown in the following diagram is comprised of a cylinder and two hemispheres. The cylinder has height $h \operatorname{cm}$ and radius $x \operatorname{cm}$. The hemispheres fit exactly onto either end of the cylinder.



The volume of the cylinder is $41\ cm^3$.

(a) Show that the total surface area,
$$S~{
m cm}^2$$
, of the solid is given
by $S=rac{82}{x}+4\pi x^2$. [3]

The total surface area of the solid has a local maximum or a local minimum value when x=a.

(b.i) Find an expression for
$$\frac{\mathrm{d}S}{\mathrm{d}x}$$
. [2]

(b.ii) Hence, find the **exact** value of a. [3]

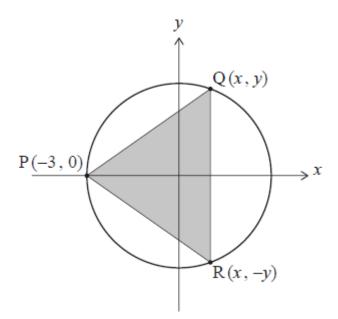
(c.i) Find an expression for
$$\frac{\mathrm{d}^2 S}{\mathrm{d}x^2}$$
. [2]

(c.ii) Use the second derivative of
$$S$$
 to justify that S is a minimum when $x=a.$ [2]

3. [Maximum mark: 14]

A circle with equation $x^2+y^2=9$ has centre $(0,\ 0)$ and radius 3.

A triangle, PQR, is inscribed in the circle with its vertices at P(-3, 0), Q(x, y) and R(x, -y), where Q and R are variable points in the first and fourth quadrants respectively. This is shown in the following diagram.



(a) For point
$${
m Q}$$
, show that $y=\sqrt{9-x^2}$. [1]

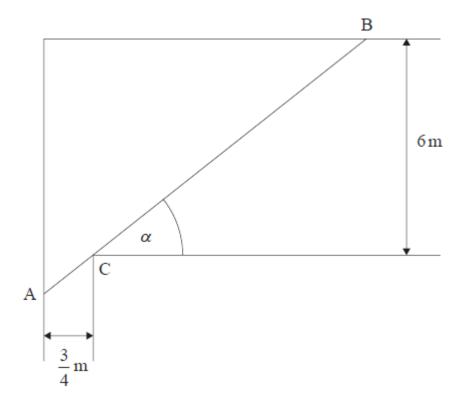
(b) Hence, find an expression for
$$A$$
, the area of triangle PQR , in terms of x . [3]

(c) Show that
$$\frac{\mathrm{d}A}{\mathrm{d}x} = \frac{9-3x-2x^2}{\sqrt{9-x^2}}.$$
 [4]

(d) Hence or otherwise, find the
$$y$$
-coordinate of ${f R}$ such that A is a maximum. [6]

4. [Maximum mark: 19]Consider the following diagram, which shows the plan of part of a house.

diagram not to scale



A narrow passageway with $\frac{3}{4}$ m width is perpendicular to a room of width 6 m. There is a corner at point C. Points A and B are variable points on the base of the walls such that A, C and B lie on a straight line.

Let L denote the length AB in metres.

Let $lpha$ k	be the angle that $[{ m AB}]$ makes with the room wall, where $0 < lpha < rac{\pi}{2}$.	
(a)	Show that $L=rac{3}{4}{ m sec}\;lpha+6\;{ m cosec}\;lpha.$	[2]

(b.i) Find
$$\frac{\mathrm{d}L}{\mathrm{d}\alpha}$$
. [1]

(b.ii) When
$$rac{\mathrm{d}L}{\mathrm{d}lpha}=0$$
, show that $lpha=rctan~2$. [4]

(c.i) Find
$$\frac{\mathrm{d}^2 L}{\mathrm{d}\alpha^2}$$
. [3]

(c.ii) When
$$lpha=rctan~2$$
 , show that $rac{\mathrm{d}^2L}{\mathrm{d}lpha^2}=rac{45}{4}\sqrt{5}.$ [4]

(d.i) Hence, justify that
$$L$$
 is a minimum when $lpha=rctan~2.$ [1]

(d.ii) Determine this minimum value of L. [2]

Two people need to carry a pole of length $11.\,25\,m$ from the passageway into the room. It must be carried horizontally.

(e) Determine whether this is possible, giving a reason for your answer.

© International Baccalaureate Organization, 2025

[2]